
DEFENCE CM jf DEFENSE

Reconfigurable Digital MR and FIR
Filters

B. Gosselin and C. Wilcox

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Defence R&D Canada
TECHNICAL REPORT

DREOTR 2001-099
November 2001

■ **.■ National Defense f Q Y~\ O flVk
■ "■ Defence nationale V_/CL1 leLSJLCL

20020305 148

Her Majesty the Queen as represented by the Minister of National Defence, 2001

Sa majeste" la reine, representee par le ministre de la Defense nationale, 2001

ABSTRACT

The work presented in this document contributes to the ROBR (Reconfigurable Omni Band
Radio) project started by the Defence Research Establishment Ottawa and the
Communication Research Centre in 1997. ROBR is a testbed implementation of a
reconfigurable satellite communications (satcom) terminal that makes use of a software
communications architecture. Such a system can enable the use of a single ground terminal to
communicate over multiple satellite communications or terrestrial links by supporting
multiple standards. The ROBR hardware architecture includes a microprocessor and several
digital signal processor (DSP) boards. The objective of this report is to document the work
done to provide a set of reconfigurable digital filters for use in the ROBR. Five infinite
impulse response (IIR) filtering modules and four finite impulse response (FIR) filtering
modules have been implemented. The function of these modules is to compute the
coefficients of a desired filter design. Also, IIR and FIR signal processing modules have been
implemented to process digital signals using the computed coefficients. The modules have
been implemented in the C programming language and are targeted for use on a DSP chip.
The implementation of the modules has been verified and compared with the results obtained
with the Signal Processing toolbox from MATLAB.

RESUME

Les travaux presentes dans le present document contribuent au projet ROBR (radio omni-
bande reconfigurable) entrepris par le Centre de recherches pour la defense, Ottawa et le
Centre de recherches sur les communications en 1997. II s'agit de la mise en ceuvre d'un
prototype de terminal reconfigurable de telecommunications par satellite qui a recours ä une
architecture logicielle pour les communications. Ce terminal peut permettre l'utilisation d'un
seul terminal au sol pour assurer des communications au moyen de plusieurs liaisons de
communications par satellite ou de plusieurs liaisons de Terre en vertu de plusieurs normes.
L'architecture materielle du ROBR comprend un microprocesseur et plusieurs cartes de
traitement numerique des signaux (DSP). Le present rapport a pour but de documenter le
travail effectue pour la fourniture d'un jeu de filtres numeriques reconfigurables en vue de
son utilisation dans le ROBR. Cinq modules de filtrage des reponses impulsionnelles infinies
(RII) et quatre modules de filtrage des reponses impulsionnelles finies (RIF) ont ete mis au
point. Ces modules servent au calcul des coefficients de la conception desiree des filtres. Des
modules de traitement des signaux RII et RIF ont aussi ete mis au point pour le traitement
numerique des signaux au moyen des coefficients calcules. Ces modules, configures en
langage de programmation C, doivent etre utilises sur des puces DSP. Le fonctionnement des
modules a ete verifie et compare aux resultats obtenus au moyen du produit Signal
Processing Toolbox de MATLAB.

in

EXECUTIVE SUMMARY

The work presented in this document contributes to the ROBR (Reconfigurable Omni Band
Radio) project started by the Defence Research Establishment Ottawa' and the
Communication Research Centre in 1997. ROBR is a testbed implementation of a
reconfigurable satellite communications (satcom) terminal that can support multiple
standards. Such a system potentially allows the Canadian Forces to use a single ground
terminal to communicate over multiple satellite communications or terrestrial links.

The ROBR hardware architecture includes a microprocessor and several digital signal
processor (DSP) boards. The objective of this report is to document the work done to provide
a set of reconfigurable digital filters for use in the ROBR. Five infinite impulse response
(IIR) filtering modules and four finite impulse response (FIR) filtering modules have been
implemented. These modules will be integrated in the DSPs and processed by them. The
function of these modules is to compute the coefficients of a desired filter design. Also, IIR
and FIR signal processing modules have been implemented to process test input signals using
the filter coefficients generated.

The implemented techniques to design IIR filters are based on transformation of continuous-
time IIR systems into discrete-time IIR systems. Two conversion methods have been
implemented to produce a discrete filter design from an analog filter design: the "Bilinear
Transformation" and the "Impulse Invariance" methods. Five major types of IIR filters have
been implemented, the Butterworth filter, the Chebyshev filter, the inverse Chebyshev filter,
the Elliptical filter and the Bessel filter. The computation of the coefficients for the IIR
filtering modules is separated into three steps: the analog design computation, the conversion
of the analog design into a discrete design and the factorization step which produces the
coefficients of the digital filter.

The implemented techniques for computing the coefficients of the FIR filtering modules are
the "Frequency Sampling Design" method, the "Design by Windowing" method and the
"Parks-McClellan" method (also called the "Remez Exchange Algorithm"). The general
procedure for FIR filter design is to sample the frequency response of a filter and then
compute the inverse discrete Fourier transform (IDFT).

An FIR implementation to compute the coefficients of a Gaussian filter has been
implemented. The method used to calculate the coefficients of this filter is the "Frequency
Sampling Design" method. Finally, a digital integrator was implemented. The function of a
digital integrator is to sum a digital input sequence over time. The Gaussian filter module and
the digital integrator module may be used in the premodulation stage of a Gaussian niinimum
shift keying (GMSK) digital modulator for the ROBR.

The modules have been implemented in the C language for further implementation on a DSP
chip. The implementation of both IIR and FIR filter modules have been verified and
compared with the results obtained with the Signal Processing toolbox from MATLAB.

The implementation of two filtering modules has been successfully done on a TMS320c6201
digital signal processor from Texas Instruments mounted on a Daytona DSP board from
Spectrum.

Gosselin, B., and Wilcox, C, 2001, Reconfigurable Digital IIR and FIR Filters, DREO TR
2001-099, Defence Research Establishment Ottawa.

VI

SOMMAIRE

Les travaux presentes dans le present document contribuent au prqjet ROBR (radio omni-
bande reconfigurable) entrepris par le Centre de recherches pour la defense, Ottawa et le
Centre de recherches sur les communications en 1997. II s'agit de la mise en oeuvre d'un
prototype de terminal reconfigurable de telecommunications par satellite ä l'appui de
plusieurs normes. Ce terminal pourrait permettre aux Forces canadiennes d'utiliser un seul
terminal au sol pour assurer des communications au moyen de plusieurs liaisons de
communications par satellite ou de plusieurs liaisons de Terre.

L'architecture materielle du ROBR comprend un microprocesseur et plusieurs cartes de
processeur numerique de signaux (DSP). Le present rapport a pour but de documenter le
travail effectue pour la fourniture d'un jeu de filtres numeriques reconfigurables en vue de
son utilisation dans le ROBR. Cinq modules de filtrage des reponses impulsionnelles infinies
(RII) et quatre modules de filtrage des reponses impulsionnelles finies (RIF) ont ete mis au
point. Ces modules seront integres aux DSP et traites par eux. Ils servent au calcul des
coefficients de la conception desiree des filtres. Des modules de traitement des signaux RII et
RIF ont aussi ete mis au point pour le traitement des signaux d'entree d'essai au moyen des
coefficients generes pour les filtres.

Les techniques utilisees pour la conception des filtres RII sont fondees sur la transformation
des systemes RII ä temps continu en systemes RII ä temps discret. Deuxmethodes de
conversion ont ete mises en oeuvre pour la production d'une conception de filtre discret ä
partir de la conception d'un filtre analogique : la methode de " transformation bilineaire " et
la methode "par invariance impulsionnelle". Cinq grands types de filtres RII ont ete
selectionnes : le filtre de Butterworth, le filtre de Chebyshev, le filtre de Chebyshev inverse,
le filtre elliptique et le filtre de Bessel. Le calcul des coefficients pour les modules de filtrage
RII se divise en trois etapes: le calcul de la conception analogique, la conversion de la
conception analogique en conception discrete et la factorisation (qui produira les coefficients
du filtre numerique).

Les techniques selectionnees pour le calcul des coefficients des modules de filtrage RIF sont
la methode de " conception par echantillonnage de frequences ", la methode de " conception
par fenetrage " et la methode de " l'algorithme d'optimisation de Parks-McClellan " (aussi
appelee la "fonction de Remez"). La procedure generate de conception des filtres RIF
consiste ä echantillonner la reponse en frequence d'un filtre, puis ä calculer la transformee de
Fourier discrete inverse.

Une application aux RIF pour le calcul des coefficients d'un filtre gaussien a ete effectuee.
La methode utilisee pour le calcul des coefficients de ce filtre est la methode de " conception
par echantillonnage de frequences ". Enfin, un module d'integrateur numerique a ete elabore.
Un integrateur numerique sert au calcul de la somme d'une sequence d'entree numerique
pour une periode donnee. Le module de filtre gaussien et le module d'integrateur numerique
peuvent etre utilises ä l'etape de la premodulation d'un modulateur numerique de modulation
par deplacement minimal avec filtrage gaussien (MDMG).

Vll

Les modules, configures en langage de programmation C, doivent etre utilises sur des puces
DSP ä une date ulterieure. Trois modules de filtrage ont ete implantes avec succes sur un
processeur numerique de signaux TMS320c6201 de Texas Instruments monte sur une carte
DSP Daytona de Spectrum. Le fonctionnement des modules a ete verifie et compare aux
resultats obtenus au moyen du produit Signal Processing Toolbox de MATLAB.

Gosselin, B., et Wilcox, C, 2001, Reconfigurable Digital IIR and FIR Filters, DREO TR
2001-099, Centre de recherches pour la defense Ottawa.

viu

TABLE OF CONTENTS

Page

ABSTRACT '. iii

RESUME iii

EXECUTIVE SUMMARY v

SOMMAIRE vii

TABLE OF CONTENTS ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xi

LIST OF FIGURES AND TABLES xiii

1 INTRODUCTION 1

l.l SCOPE 1

2 DIGITAL FILTERS 3

2.1 DISCRETE-TIME SIGNAL 3
2.2 LINEAR TIME-INVARIANT (LTI) SYSTEMS 4
2.3 THE LAPLACE TRANSFORM AND THE Z-TRANSFORM 4
2.4 FILTER DESIGN AND MODULE SPECIFICATIONS ; 6

3 INFINITE IMPULSE RESPONSE FILTERS 9

3.1 INFINITE IMPULSE RESPONSE (IIR) LTI SYSTEMS 9
3.1.1 Flow diagrams of recursive structures 9

3.2 IIR FILTER DESIGN 10
3.2.1 Analog filter design : 10

3.2.1.1 Classical analog filter approximations 10
3.2.1.2 Butterworth filter properties 11
3.2.1.3 Chebyshev filter properties 12
3.2.1.4 Inverse Chebyshev properties 14
3.2.1.5 Elliptical filter properties 16
3.2.1.6 Bessel filter properties 19

3.2.2 Conversion of analog IIR filters for digital implementation 20
3.2.2.1 Bilinear transformation 20
3.2.2.2 Impulse invariance method 22

3.3 IIR FILTERING MODULE IMPLEMENTATION 24
3.3.1 System 24
3.3.2 IIR coefficients computation modules 25

3.3.2.1 Analog design computation 26
3.3.2.2 Analog-to-digital Conversion 27
3.3.2.3 Factorization 27

3.3.3 IIR signal processing module 29

4 FINITE IMPULSE RESPONSE FILTERS 31

4.1 FIRLTISYTEMS 31
4.1.1 Flow diagrams for non-recursive structures. 31

IX

4.2 FIR FILTER DESIGN 32
4.2.1 "Frequency Sampling Design"filter module 32

4.2.1.1 Gibbs phenomenon 33
4.2.2 "Design by Windowing" filter module 34
4.2.3 Parks-McClellan filter module 37

4.2.3.1 Chebyshev approximation 37
4.2.3.2 Alternation theorem 39

4.2.4 Gaussian digital filter module 41
4.2.4.1 Digital integrator module 43

4.3 FIR FILTER MODULE IMPLEMENTATION 43
4.3.1 System 43
4.3.2 FIR coefficients computation modules 44

4.3.2.1 Frequency sampling design method module implementation 44
4.3.2.2 Parks-McClellan method implementation 47
4.3.2.3 Gaussian filter implementation 48

4.3.3 FIR signal processing modules 49
4.3.4 Use of the filter and signal processing modules 50

5 DSP IMPLEMENTATION 53

5.1 EXCHANGING DATA BETWEEN THE DAYTONA AND THE HOST STATION 53

5.2 STATIC AND DETERMINED LENGTH MEMORY ALLOCATION 54
5.3 DYNAMIC MEMORY ALLOCATION 55
5.4 HOST PROGRAM 57

5.4.1 Host software functions 57
5.5 DSP PROGRAM 57

5.5.1 DSP software functions 57

6 RESULTS AND VERIFICATION 59

6.1 METHODOLOGY 59
6.2 RESULTS 60

6.2.1 IIR filter module verification 60
6.2.2 FIR filter module verification 61

7 SUMMARY 65

8 REFERENCES 67

APPENDICES

APPENDIX A Al

APPENDIX B B1

APPENDIX C • C1

LIST OF SYMBOLS

T Sampling period

Fs
Sampling frequency

0) Digital frequency
ac Digital cutoff frequency

Q Analog frequency

Oc Analog cutoff frequency

Pk Poles of a transfer function

zk
Zeroes of a transfer function

Kit) Continuous-time transfer function or impulse response

HciQ) Continuous frequency transfer function

h[n] Discrete-time transfer function

Hico) Discrete-frequency transfer function

S[n] Impulse signal

H0
Static gain of a filter

n Filter order

LIST OF ABBREVIATIONS

ROBR Reconfigurable OmniBand Radio
LTI Linear Time-Invariant
DTFT Discrete-Time Fourier Transform
DFT Discrete Fourier Transform
IDFT Inverse Discrete Fourier Transform
IIR Infinite Impulse Response
FIR Finite Impulse Response
FFT Fast Fourier Transform
GMSK Gaussian Minimum Shift Keying

XI

LIST OF FIGURES AND TABLES

Page

Figure 1 Graphical representation of a discrete-time signal 3
Figure 2 Representation of a Linear Time-Invariant System 4
Figure 3 Magnitude response for a low-pass filter 6
Figure 4 Flow diagram implementing the Direct Form I realization of an IIR filter 9
Figure 5 Frequency response for a Butterworth filter 12
Figure 6 Frequency response for a Chebyshev filter 13
Figure 7 Frequency response for Inverse Chebyshev filters 15
Figure 8 Frequency response for an Elliptical filter 17
Figure 9 Frequency response for a Bessel filter for different values of filter order, n 19
Figure 10 Mapping of continuous frequency to digital frequency 22
Figure 11 Block diagram of the implementation of the reconfigurable IIR filtering modules
 24

Figure 12 Cutoff frequency normalization and analog frequency computation 25
Figure 13 Chebyshev analog design computation algorithm 26
Figure 14 Implementation of the Bessel analog design computation block as a lookup table
 27

Figure 15 Bilinear transform analog-to-digital conversion algorithm 28
Figure 16 Expansion formula algorithm 28
Figure 17 IIR signal processing module algorithm 30
Figure 18 Flow diagram of the Direct Form realization of an FIR filter 31
Figure 19 The desired frequency response Hd(to) of an ideal low-pass filter 32
Figure 20 (a) Frequency response of an FIR filter affected by Gibbs phenomenon (b)

Power Spectrum of an FIR filter affected by Gibbs phenomenon 34
Figure 21 Commonly used windows 36
Figure 22 Comparison between the "Frequency Sampling Design" and "Design by

Windowing" methods for FIR filter design, (a) Frequency response, (b) Power
spectrum 37

Figure 23 The desired frequency response D(co) of a low-pass filter 38
Figure 24 Typical example of a low-pass filter approximation that is optimal according to

the alternation theorem for c = 7 41
Figure 25 The premodulator stage of GMSK digital modulator includes a digital integrator

followed by a Gaussian filter 42
Figure 26 Frequency response for a Gaussian filter 42
Figure 27 Block diagram of FIR filter module implementation 43
Figure 28 Computation of the number of samples to include in the passband of an ideal low-

pass filter 45
Figure 29 Sampling of an ideal low-pass filter frequency response 45
Figure 30 Inverse discrete Fourier transform algorithm performed on the ideal low-pass

filter frequency response samples 46
Figure 31 "Design by Windowing" algorithm 47
Figure 32 Content of the file remezex.c 48
Figure 33 Sampling algorithm of a Gaussian distribution 49

xui

Figure 34 FIR signal processing module algorithm 50
Figure 35 Command line for Butterworth filter module 51
Figure 36 Example of an output file generated by the coefficients computation modules... 51
Figure 37 Command line for executing an IIR signal processing module 52
Figure 38 Example of an output file generated by a signal processing module 52
Figure 39 Static allocation of the variables in the SDRAM memory 54
Figure 40 Flow diagram of the implementation of the filter modules 55
Figure 41 Sysmem memory section allocation in the DSP memory map 56
Figure 42 Impulse signal generated with Matlab 60
Figure 43 Error curve for reconfigurable filter using the "Frequency Sampling Design"

method, (a) for N= 10 coefficients, (b) for N=30 coefficients 61

Table 1 List of specifications for a low-pass filter 6
Table 2 Computational requirements for Direct Form I structure 10
Table 3 IIR Filter types implemented by the corresponding modules 25
Table 4 Computational requirements of the Direct Form I structure of FIR filters 32
Table 5 Inverse Discrete Fourier Transform formulas for FIR Design 33
Table 6 Commonly used window functions 36
Table 7 FIR filter types implement by the corresponding modules 44
Table 8 Memory configuration of the TMS320C6201 53
Table 9 Corresponding MATLAB functions for the IIR modules verification 59
Table 10 Corresponding MATLAB functions for the IIR modules verification 59

xiv

1 INTRODUCTION

With the rapid increase of communications services and systems being developed and
implemented using different standards, much effort has been directed over the past decade to
deal with issues relating to interoperability and compatibility of these various systems.
While global standardization can be one solution to the problem, a more practical remedy
may be to develop transceivers that can support different frequency bands and different
waveform standards using a common hardware platform or device. A feasible way to
achieve this is to implement the waveform standards in software to provide the required
flexibility.

Although initially focused on the personal communications services industry, the software
radio concept can be extended to other applications such as satellite communications
(satcom). Just as multiple standards are being considered for integration on a single device
(e.g. cellular phone), multiple satcom waveforms can be implemented in software to run on a
single hardware platform or terminal. As with personal communications services, this
approach potentially offers benefits for interoperability, ease of future upgrades, and even
integration of future systems.

Defence Research Establishment Ottawa (DREO) is engaged in a project with the
Communications Research Centre (CRC) to develop a proof-of-concept testbed for a
reconfigurable omniband (ROBR) satcom ground terminal using the software radio concept
described above. The hardware may consist of general processors, digital signal processor
(DSP) boards, application specific integrated circuits (ASICs), or field programmable gate
arrays (FPGAs) to perform the processing functions of the particular waveform standard of
interest.

One common function that appears in the transmit/receive chain of a ground terminal is
filtering. Filter specifications may differ from location to location in the transmit/receive
chain. It would be useful to have one software module capable of generating filter
coefficients for many types of filters. While many commercial software packages are
currently available for filter design, they produce a text file with coefficients that have to be
manually integrated into the processing elements of the terminal. Any change in filter
specifications would require a new text file to be generated and integrated. The development
of a reconfigurable digital filter module for the ROBR project allows the coefficients to be
generated or updated while the terminal continues to operate.

1.1 Scope

The work documented in this report provides a suite of several kinds of reconfigurable low-
pass filters for use in a DSP and more specifically, in the ROBR terminal testbed. The
reconfigurable digital filters have been programmed in C. Infinite impulse response (IIR) and
finite impulse response (FIR) filters have been implemented for more flexibility. The
techniques to design IIR filters are based on conversion of continuous-time IIR systems into
discrete-time IIR systems. This project explores and implements two different conversion

methods: the Bilinear Transformation and the Impulse Invariance method. Five major types
of IIR filters have been implemented: the Butterworth filter, the Chebyshev filter, the inverse
Chebyshev filter, the Elliptical filter and the Bessel filter. In contrast FIR filters are almost
entirely restricted to discrete-time implementations. FIR filter design is an approximation of
an ideal frequency response using specific approximation methods. Three approaches have
been explored and implemented to design optimal equiripple filters. They are the "Frequency
Response Sampling Design" method; the "Design by Windowing" method; and the "Parks-
McClellan" algorithm. The first two methods consist of sampling the frequency response and
performing an inverse discrete Fourier Transform (IDFT) to compute the filter's coefficients.
The Parks-McClellan method uses techniques from the approximation theory. The following
report provides a description of IIR and FIR systems and filters. The report describes the
various filter design methods mentioned above and their implementation for a general
purpose processor. The report also describes the adaptation of two of the implemented
methods for use on a DSP. A comparison of the generated filter coefficients for each filter
with MATLAB implementations is presented. The report also discusses implementation
issues related to digital filter design. The reconfigurable digital filter modules are available in
the package digitaljilters. Further implementation details can be found in the user's guide
in the digitaljilters package.

2 DIGITAL FILTERS

Filters are an important class of systems in signal analysis, signal processing and
communication. A filter can be described as a discrete-time system or an analog system that
passes certain frequency components while rejecting others. In a more general context, any
system that modifies certain frequencies relative to others is also called a filter. The
following sections present the fundamental concepts involved in discrete-time or digital
filtering.

2.1 Discrete-time signal

A discrete-time signal is an indexed sequence of real or complex numbers denoted by x[n]
[1]. It is a function of an integer-valued variable, n, that represents an instant in time. In
practice, discrete-time signals are derived by sampling a continuous-time signal xc(t) to
produce a sequence of samples. Alternatively, a sequence, x[n], can be represented as a sum
of scaled, delayed impulses [1] as follows

x[ri\ = J]x[&]£[n-fc]
*=-«

where

x[k] = xc(kT)

(1)

(2)

<?[«] =
n = 0
«*0

(3)

Figure 1 shows an example of a discrete-time signal, x[n], representing an arbitrary
continuous-time signal, xc(t).

... x[n]

-2-101234 n

Figure 1 Graphical representation of a discrete-time signal

2.2 Linear Time-Invariant (LTI) systems

This section introduces LTI systems, which are very important for understanding discrete
filtering. LTI systems may be described in terms of the effect they have on discrete-time
signals. Figure 2 shows a block diagram of an LTI system. The input x[«]and the output
y[n]of the LTI system are discrete-time signals. An LTI system may be viewed as a black
box where its output is related to its input by the impulse response (or transfer function) hk[n]
of the system.

Figure 2 Representation of a Linear Time-Invariant System

The impulse response, hk[n], is the response of the system to an impulse 8[n-k]. An LTI
system can be completely characterized by its impulse response. We can obtain the output of
the system from any input by computing

vH=2>[*M«-*] (4)

which is commonly called a convolution sum [1] and is denoted by

2.3 The Laplace transform and the Z-transform

The Laplace transform is one of the most important tools used in signal analysis. It is used to
represent the frequency spectrum of a given signal. In fact, the Fourier transform is a special
case of the Laplace transform. The Laplace transform of a function, x(t), defined for
t e [- oo, oo], is given by

X(s)= jx(t)e's'dt (6)
-00

where s is a complex frequency variable, s = a + jQ [2]. If x(t) describes the behaviour of
a system in the time domain, X(s) represents the behavior of the same system in the
complex frequency domain. It is noted that for the purposes of this report, the symbol Q is

used to represent the continuous frequency variable whereas the symbol <o is used to denote
the discrete frequency variable as will be described further.

The equivalent transformation for a discrete-time system is the Z-transform. The Z-transform
changes the representation of a discrete signal from the time domain to the discrete frequency
domain. The Z-transform of a discrete signal x[n] is given by [2]

X(z)=fdx[ny (7)

In order to see the relationship between the Laplace and Z- transforms, consider a function,
xe(t), which is obtained by sampling a continuous function, xc(t), represented
mathematically as

.(0 = xe(f) £(/ - nT) = 2>e(» W - nT) (8)

where T is the sampling period. The Laplace transform of xe(f) can be written as

Xe(s)=)xe(t)e-«dt (9)
-co

Xe(s)=fixc(nT)e-T° (10)
»=-00

Using the relationship in Equation (2), the Z-transform, X(z), can be compared with the
Laplace transform, Xe (js), where it can be seen that they are related by a variable change

z = eTs (11)

so that

()L» = JXotfv" = *.(*) (12>

It is noted that the substitution z = e715 transforms the s - jCl axis of the complex frequency

plane onto a unit circle z = ejTn [2].

2.4 Filter design and module specifications

Filters are an important class of LTI systems. They are used extensively in communications
(e.g. low-pass filters). It is convenient to characterize a filter by its frequency response
expressed by the magnitude of its transfer function, |//(ey")|. An example of the magnitude

response of the transfer function for a low-pass filter is shown in Figure 3. Parameters that
describe the filter characteristics are listed in Table 1.

i+fc

1-Sr

\Ff(e^

Passband Transition band Stopband

Q

Qf us
n=Fs

Figure 3 Magnitude response for a low-pass filter

Filter order n
Passband frequency Op
Stopband frequency Qs

Passband ripple Sp
Stopband ripple 5s
Cutoff frequency ne
Sampling frequency Fs

Passband attenuation Ap

Stopband attenuation As
Transition band roo, ai

Table 1 List of specifications for a low-pass filter

Mathematically, the low-pass filter in Figure 3 can be described [1] by

l-öp<\H(ejn]<\ + öp, 0<|Q|< n. (13)

#(«*]**., o.^|Q|<^- (14)

The design process of a filter begins with the filter specifications, which include the
constraint on the magnitude of the frequency response, the type of filter and the filter order.
Once the specifications have been defined, the next step is to find a set of filter coefficients.
The coefficients are simply the values taken from the transfer function hk [n] for specific
indices that produce the acceptable filter response. After the coefficients have been
generated, the next step is to use them to process a signal.

There exist two classes of digital filters: infinite impulse response (IIR) filters and finite
impulse response (FIR) filters. They are both described in more detail in the following
sections.

3 INFINITE IMPULSE RESPONSE FILTERS

3.1 Infinite impulse response (IIR) LTI systems

IIR systems are a subclass of linear time invariant systems and satisfy a linear constant-
coefficient difference equation [1] of the form

N M

Y1aky(n-k) = ^jbkx(n-k) an =1 (15)
t=0 *=0

Applying the Z-transform to both sides of Equation (15) and using the linearity and the time-
shifting properties of Z-transforms [1] gives

a0=l ftakz-*Y(z) = flbtx-*X{z)

The transfer function in the Z-domain, H(z), can now be defined as

H{z) =
Y(z)
X{z)

*=o
-M

i+f>*

b0+bxz~x +b2z~2 +... + bMz
1 + a}z~l + a2z~2 +... + aNz~N

*=1

The coefficients, bk and ak, are the filter coefficients.

(16)

(17)

3.1.1 Flow diagrams of recursive structures

For implementation on a general or digital processor, IIR systems of the form presented in
Equation (15) must be converted into a structure from which an algorithm can be derived.
The difference equation given by Equation (15) can be represented graphically as a recursive
structure [1]. The IIR structure shown in Figure 4 is referred to as Direct Form I.

x[n] bo

z-1 bi

r-1 bbf-1

r-1

y[n]

-ai r-1

4 (t>^ r-1

&*-*<+) ©* -aN

Figure 4 Flow diagram implementing the Direct Form I realization of an IIR filter

Table 2 shows the computational requirements of Direct Form I [3].

Number of multiplications
Number of additions
Number of delays

N + M +1 per output sample
N + M per output sample
N + M

Table 2 Computational requirements for Direct Form I structure

3.2 IIR filter design

There are two general approaches used to design IIR filters. The first approach is to design an
analog IIR filter and then map it into an equivalent digital filter. This method is
computationally efficient and gives a lot of control on the design because the art of analog
filter design is highly advanced [1]. The second approach is to use algorithmic and iterative
design procedures, which generally requires solving a set of linear or non-linear equations.
The first approach has been used in this project.

3.2.1 Analog filter design

3.2.1.1 Classical analog filter approximations

This section presents the characteristics of the five analog filter prototypes that have been
used to produce discrete IIR filters. The important characteristics to be considered are the
transfer function of the filter, the magnitude and the phase of the frequency response of the
filter, the poles and zeroes of the filters. The transfer function of the analog prototypes will
be expressed in the continuous frequency domain in terms of its Laplace Transform.

The transfer function of any analog prototype filter may be expressed as

Y\s-z,
H(s) = H0^ (18)

where z\ are the zeroes and pk are the poles of the transfer function. The magnitude of the
frequency response may be expressed as

H(S)H(-s)\.n=\HUOf (19)

10

The poles of the transfer function [1] are complex numbers and are usually of the form

Pk=ak+jQk (20)

3.2.1.2 Butterworth filter properties

A Butterworth filter yields a flat frequency response in the passband and in the stopband as
shown in Figure 5. The Butterworth approximation, generally used to design low-pass filters,
yields an allpole filter and can be described by the following equations [4] [5].

normalized transfer function ^ »
f](s-pk) (

s ~ P0(s ~ P2)-(s ~ P„)
k=\

unnormalized transfer //(j.) =
function

Q",

magnitude 2/~»2« Q

(21)

(22)

(23)

/,e = i where Qc = cutoff frequency, e=\\010 -1, and Ap = passband attenuation in dB.

The poles of H(s), pk = crk + jQk, are located at 2n equally spaced points around a circle of
radius Q [4] [5] and are given by

\\l2n pk=(rirMUa) = aeexp\j
2n

k = 0,l,...,n-\ (24)

o\ = Q„ cos
(n + l + 2k)n:^

In
(25)

Qk = Qc sinl ^ —■*- (26)

11

Freqi{8ncy>f8sponse JoraButtetwofthf |t^$mujt|ple '«Äs*

Figure 5 Frequency response for a Butterworth filter

The number of poles equals the order of the analog filter, n. As shown in Figure 5, the
frequency response in the transition band becomes steeper as the filter order increases.

The minimum order that will ensure an attenuation of As or more at frequencies Qs and above
can be obtained [5] by using

_log(lQ-^/10-l)

2 log
^

(27)

Ay
where Qs

= stopband frequency

3.2.1.3 Chebyshev filter properties

Chebyshev filters are designed to have an amplitude response with relatively sharp transition
from the passband to the stopband. This sharpness is achieved at the expense of ripples that
are introduced into the response. As with the Butterworth approximation, the Chebyshev
approximation yields an allpole filter. Figure 6 shows examples of Chebyshev filters of
various order, n. As the order increases, the ripple in the passband increases. However the
tradeoff is a sharper transition from the passband to the stopband.

12

Frequency response for Chebyshev filters ;of multiple orders

0 01 02 03 04 os^H^V^^BfiSP

Figure 6 Frequency response for a Chebyshev filter

The transfer function and magnitude response of a Chebyshev filter [4] [5] is given by

Transfer function HW = HOY[T: 77
k-0\.S-Pk)

Magnitude response I ^ -'I ~ \ + e2T2(Q)

(28)

(29)

where the static gain, Ho, is given by

#0 =

Il(~^*) nodd

io'',2ori(-A)
*=i

neven
(30)

The parameter, e, is dependent on the passband ripple, rp = 20\og(Sp), as follows

*=Vior'/IO-i (31)

13

and Tn(Q) is the Chebyshev polynomial given by

T(Q) = i C0S("C0S_1(Q))
1 cosh(« cosh"1 (Q)) Q > 1

0<Q<1
(32)

The 2n poles of a Chebyshev filter [4] [5] are given by Equation (29) where

ak = Qc cos
(2£-l) £

In + 2
(l/y)-r k = 0,\,...,n-\ (33)

and

Qk = Qc sin
(2^-1) n_

In + 2
(\ly) + y

1 + Vl + f2
\l/n

k = 0,l,-,n-\ (34)

(35)

3.2.1.4 Inverse Chebyshev properties

The inverse Chebyshev approximation yields a filter which has zeroes and poles. Depending
on whether the order is even or odd, the filter will have as many zeroes as poles, or n - 1
zeroes and n poles. Figure 7 shows the frequency response of an inverse Chebyshev filter for
different orders. Just as the Butterworth and Chebyshev filters showed, the frequency
response becomes steeper in the transition band as the order of the filter increases. However,
the inverse Chebyshev filter frequency response exhibits a flat response in the passband and
ripples in the stopband. The ripples in the stopband increase as the filter order increases.

14

a

Frequency;response for InverselpliGbysHäv filters of multiple orders

;>;1;

03

■ 1 1 1
■ 1 1 1

— n = 2
— n = 3
— n = 4
— n = 5
— n = 6

n = 7
— n = 8
— n = 9

1
* r""",%.

^

1 1 1
• 1 1

1 1 1

/
ft
(>

5$?

0.6

0:4

0.2

1-
1-

Bar

1
-$ «:

1 1 1
ii 1 1

\ AH IVT»H> -<^

i i i

■ M wv fA ' XV Y -^\ \ \l /A ?%/ \ \ ^

) 0.1 0.2 0 3 0.4 0.5' ,0.6 0.7 0.8 0.9
normalized frequency

1

Figure 7 Frequency response for Inverse Chebyshev filters

The transfer function of an Inverse Chebyshev filter [4] is given by

tJobk (s-ak) ak ="
Sk

(36)

and its magnitude response is

Wuntf =
l + s2[Tn

2(Q)Y
(37)

where Tn(Q) is again the Chebyshev polynomial given by Equation (32), and where e
depends on the stopband ripple in dB, rs = 201og(£s) as follows,

-VlO^10-! (38)

15

The poles of an Inverse Chebyshev filter [4] are given by Equation (36) where

o* = Qccos
(2/ + 1) £

In + 2

v-l

sinh// i = 0,l,...,«-l (39)

Q,=
/
Q„sin

(2i + l) n_
In + 2

V cosh// / = 0,l,...,w-l (40)

where

sinh-'fl/f-')
// = i L

n
(41)

The zeroes of an Inverse Chebyshev filter [4] are given by

For n odd

j k = 0,\,...,n-\
zk =

cos
(2k + \)7T

2n
k*n

(42)

For n even

zk =
J

cos
(2£ + l>r

2n .

k = 0,1,...,«-! (43)

3.2.1.5 Elliptical filter properties

By allowing ripples in the passband, Chebyshev filters obtain better frequency selectivity
than Butterworth filters because of the sharper transition band. Elliptical filters improve upon
the performance by permitting ripples in both the passband and stopband. Figure 8 shows the
frequency response of an Elliptical filter for different values of filter order.

16

Frequermyresponse>fbrElliptical filters of multiple orders

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
normalized frequency •

Figure 8 Frequency response for an Elliptical filter

The transfer function of an Elliptical filter [4] [5] is given by

H(s) = _gg_rj *2+%
D0(s)%ts2+bus + b0

where

(44)

/ =

n-\

n
12

for n odd

for n even
(45)

D0(s) = ±s + °o for n odd
for n even (46)

and <J0 is a constant defined in Appendix B.

The analog static gain, H0, can be calculated [4] using

17

tf„ = <=1 °0i

10
-0.05 ApT-tK_

i=l a0i

for n odd

for n even

(47)

and the magnitude response [4] [5] using

\Hc(jnf = ^-T 1 c ' l + s2R2A ,(0) (48)

R„(Q) is the Chebyshev Rational Function with respect to the centre frequency

j£lpQs = Q0 = 1 and where 8 is the ripple factor which depends on the passband ripple, 8P,

or on the stopband ripple in decibels, rs [3] as follows

s =
'l-2Sp + 6p

2
:VlO'</10-l (49)

The Rational Normalized Function Rn (Q) is given by [2]

Rn(Q) = .\

(n-l)/2 Q 2 02

if I-Q/Q2

|^|Q,2-Q2

ifl-Q,2Ü2

ybr « odd

for n even

(50)

The Elliptical filter poles can be computed following a calculation algorithm. Steps to
calculate the values a0j, b0i and bu of the transfer function are taken from [4] and are listed
in Appendix B. Once these values are calculated it is easy to obtain the poles, the zeroes and
the gain of the analog filter which are then used to compute the coefficients of the filter [4].
The important parameters that have to be considered for the design of an analog Elliptical
filter are

Qp = passband frequency

Qs = stopband frequency
Ap = maximum passband loss (dB)

As = maximum stopband loss (dB)
k = selectivity factor = Qp /Qs

Using the quadratic formula, the 1th pair of complex pole values [4] can be expressed as

18

The zeroes occur at

_-bu±Jbu
2-4b0i

2

zt = ±7"V^"

1 = 1,2,...,/

/ = 1,2,...,/

(51)

(52)

3.2.1.6 Bessel filter properties

Bessel filters are designed to have maximally flat group-delay characteristics. As a
consequence, there is no ripple in the impulse and step response. On the other hand, the
rolloff of the frequency response is more gradual, making the transition band wider than for
Butterworth or Chebyshev type filters. The Bessel filter is also an allpole filter. Figure 9
shows the frequency response of Bessel filters for various values of n.

Frequency for Bessel filters of multiple orders

0 0.1 .0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
normalized frequency

Figure 9 Frequency response for a Bessel filter for different values of filter order, n

The transfer function of a Bessel filter [4] is expressed as follows

H(s) =
<lM

(53)

19

where

■() = ZV* (54)
k=\

I- ?"-*>'■ (55)

The following recursion formula [5] is used to determine q„(s) from q„_x(s) and q„_2(s)

^=(2"-%n_,+^2^n_2 (56)

Using this recursion formula involves the computation of the poles of the analog transfer
function with a numerical analysis formula. These poles are the roots of Equation (53). Using
these formulas involves more complexity in the algorithm and there is no guarantee that the
computation of the roots will converge. A very efficient way to implement the Bessel filter is
by using pre-computed values for its poles. The Bessel filter was implemented using a look
up table for filter orders of up to n = 25. Poles of the analog transfer function of the Bessel
filter have been computed using the Signal Processing toolbox from MATLAB and are used
in this project. The analog poles are converted to discrete values using one of the analog-to-
digital conversion methods shown in the next section to obtain a discrete design for the
implementation.

3.2.2 Conversion of analog MR filters for digital implementation

This section describes two analog-to-digital conversion methods that have been used for IIR
filter implementation in this project. The idea of the conversion methods is to transform the
analog transfer function expressed in the analog frequency domain or the s-plane into a
discrete transfer function expressed in the discrete frequency domain or the z-plane.

3.2.2.1 Bilinear transformation

The bilinear transform [1] is a mapping from the s-plane to the z-plane defined by

H(z) = Hc
f\-z'^

vl + ^'yj T

where Hc(s) is the Laplace transform of a continuous function.

(57)

20

In the previous sections, the equations for the analog poles of the transfer functions of
different IIR filters expressed in the S-domain were presented. To compute the discrete poles
of the digital IIR filter from the analog poles of the analog prototype the following
relationship is used.

or conversely,

2 1-z"1

n+z1

2-7?
* = ■=-£ (59)

2 + Ts

where T is the sampling period.

3.2.2.1.1 Frequency warping function

In bilinear transformation, the relationship between the analog or continuous frequency, Cl,
and the digital frequency, co, in the Z-domain [1] is given by

n = -tan(-) (60)
T 2

Conversely, to compute the digital frequency corresponding to an analog frequency in the S-
domain, the following equation applies

for}
co = 2arctan| — (61)

2;

Equation (60) is plotted and shown in Figure 10. It is noted that the range of analog
frequencies -oo £ Q <oo maps to normalized digital frequencies -n < <o<* %. The frequency a
= 7i corresponds to half the normalized sampling frequency Fs = 2%. If viewed from the point
of view of Nyquist's Theorem, since the bilinear transformation is able to map all continuous
frequencies, Q, to digital frequencies below FJ2, there are no aliased components resulting
from the conversion of an analog filter to a digital one. However, the effect of this
transformation is the non-linear compression of the discrete frequency axis as shown in
Figure 10.

21

n

__J Q

-7t

Figure 10 Mapping of continuous frequency to digital frequency

3.2.2.2 Impulse invariance method

The "Impulse Invariance" method consists of sampling the impulse response of a continuous-
time system, hc(t) to get a discrete impulse response, h[n], as follows

h[n] = Thc(nT) (62)

From Nyquist's sampling theory, it can be shown [1] that the frequency response of the
discrete-time filter is related to the frequency response of the continuous-time filter by [1]

»CO-z *.|/§+y Y* *=-«
(63)

However, in the case of an ideal bandlimited continuous-time filter,

which reduces Equation (63) to

H(eJ*) = Hc

(V

M>7tlT

\o)\ <n

(64)

(65)

It follows from Equation (64) that the discrete-time and continuous-time frequencies are
related linearly by

o) = QT (66)

22

In practice, the frequency response of a continuous-time filter is not bandlimited as described
in Equation (65). As a result, aliasing can occur between successive terms of Equation (63).
The presence of aliasing has an effect on the design of a discrete-time filter using the Impulse
Invariance method. However, if the frequency response of the continuous-time filter at
higher frequencies is sufficiently low and the sampling frequency is sufficiently high enough,
then aliasing is minimized.

It is shown in [1] that the transformation from continuous-time to discrete-time can be
achieved by considering the continuous-time frequency response as a partial fraction so that

HeUa) = He(s) = t,— (67) *=i s — sk

Akmay be obtained [5] by computing,

A=[(s-P>)HM]\,-Pt (68)

Taking the inverse Laplace transform, the impulse response of the continuous-time filter
becomes

Kit) = w (69)
0 f<0

The impulse response of the discrete-time filter, obtained by sampling Äc(/)from Equation
(62) becomes

/lH=7%c(«r)=r24(^r)"«[«] (70)

where u[n] is the unit step function.

N

I
*=1

By taking the Z-transform of Equation (70), the discrete transfer function of the filter is
therefore given by

23

3.3 IIR filtering module implementation

3.3.1 System

The IIR filters implemented consist of two important components, the coefficients
computation module and the signal processing module. The coefficients computation module
is responsible for designing the filter and computing the coefficients. In order to verify the
coefficients computation module, a signal processing module is implemented that uses the
coefficients generated by the computation module to filter a test signal.

The coefficients computation module operates in three basic steps as shown in Figure 11.
First, it computes the analog poles, zeroes and static gain of the analog design. Secondly, it
transforms the analog filter design to a digital design and obtains the digital poles, zeroes and
static gain. The final step consists of factorizing the digital poles and zeroes to obtain the
filter coefficients. Two analog-to-digital conversion methods have been implemented and are
compared.

Filter specifications

COEFFICIENTS
COMPUTATIONS

MODULE

Step 1: Analog design computation

Obtain analog poles, zeroes
static gain

Step 2: Conversion to discrete design

Obtain digital poles, zeroes
static gain

Step 3: Factorization of the discrete roots

FILTER LIBRARY

Complex number and
Polynomial

manipulation

Input signal
SIGNAL PROCESSING

MODULE Output signal

Figure 11 Block diagram of the implementation of the reconfigurable IIR
filtering modules

Each of the steps outlined above makes use of a header file called "Filter.h". The header file
contains routines for complex number manipulation and polynomial manipulation and is
listed in Appendix C. Complex number manipulations include computing the norm,
conversion from Euler representation to trigonometric representation using the formula,

re JO) = cosü) + jsinü), multiplication and division of two complex numbers, computing the

24

square root of a complex number, and computing a number raised to a complex power, nx+Jy.
Polynomial manipulations include the multiplication of two polynomials and computing an
expansion formula to obtain the roots of a polynomial.

The following two sections describe the coefficients computation and signal processing
modules in more detail. The software developed for this project is assembled in a
digitalJilters package for future use in the ROBR.

3.3.2 IIR coefficients computation modules

The principle function of these modules is to compute the constants ak and bk for an IIR
filter given by Equation (17). Five IIR coefficients computation modules have been
implemented based on the analog designs presented in Section 3.2. Table 3 lists the
implemented modules.

Filter type Module name
Butterworth filter butter
Chebyshev filter chebl

Inverse Chebyshev filter cheb2
Elliptical filter Ellip

Bessel filter Bessel

Table 3 IIR Filter types implemented by the corresponding modules

More information about how to use each module can be found in a user's guide included with
the software developed. All modules require two input parameters, the digital cutoff
frequency in Hertz and the sampling frequency also in Hertz . To enable the analog design
computation block to calculate the analog values of the analog design the input cutoff
frequency needs to be normalized and mapped as in Equation (60). Figure 12 shows the
implementation of these operations.

// normalization of the digital cutoff frequency over 0 to 2%

float Wd = fc * PI / (Fs / 2.0);

// computation of the analog frequencies

float Wc = 2.0/(1.0/Fs) * tan(Wd/2.0);

Figure 12 Cutoff frequency normalization and analog frequency computation

Wd is the normalized digital cutoff frequency received by the modules. Wc is the analog
cutoff frequency required to compute the analog design, and Fs is the sampling frequency.

25

3.3.2.1 Analog design computation

The first step of the reconfigurable IIR module is to compute the analog poles, zeroes and
static gain for a desired analog filter design. Figure 13 shows the implementation of the
analog design computation block for the Chebyshev module (chebl). This block implements
the equations shown in Section 3.2.1.3. The variables, p, z and K are the arrays that contain
the poles, the zeroes and the analog static gain, respectively. The poles are computed using
Equations (33) and (34) and the analog static gain K (introduced as H0 in Section 3.2.1) is
obtained by computing Equation (30). Recall from Section 3.2.1 that the Chebyshev filter is
an allpole filter and thus, does not have zeroes. This is why the elements of array z are set to
zero. The same procedure is carried out for the other IIR filters with the appropriate
equations for poles, zeroes, and static gain.

As explain earlier in Section 3.2.1.6, the Bessel filter is implemented using a lookup table.
No zeroes are computed because this filter is an allpole filter. Figure 14 shows the
implementation of the Bessel coefficients as a look up table. The module considers filters up
to order 25. The poles stored in the table have been calculated with MATLAB's besselap
function from the Signal Processing toolbox.

//computation of the analog poles
for (i=l;i<=N;i++)
{

z[i-l].Q = 0;
z[i-l].1 = 0;
p[i-l].Q = sin((2*i-l)*PI/(2*N))*(((1.0/gamma)-gamma)/2.0);

//formula for analog poles
pfi-l].I = cos((2*i-l)*PI/(2*N))*{((1.0/ganma)+gamma)/2.0);
p[i-l] = set_to_zero(p[i-l]);
K = multc(K.Q,K.I,-l*p[i-l].Q,-l*p[i-l].1);

//computation of the analog static gain

}

//if analog static gain the order is even, adjust the analog gain
if(N%2==0)

K.Q /=sqrt((1.0 + epsilon*epsilon));

Figure 13 Chebyshev analog design computation algorithm

26

Switch(N)
{

case
case

0: return;
1: p[0].Q = -1.0;

p[0].I = 0.0;
break;

case 2:p[0].Q=-0.8660254037844386467637229;
p[0].I=+0.4 999999999999999999999996;
p[l].Q=-0.8660254037844386467637229;
p[l].I=-0.4999999999999999999999996;
break;

case 25: p[0].Q=0.0;
p[0].I=-0.9062073871811708652496104;
p[l].Q=-0.9028833390228020537142561;
p[l].I=-93077131185102967450643820.0E-27;
p[2].Q=-0.9028833390228020537142561;

Figure 14
table

Implementation of the Bessel analog design computation block as a lookup

3.3.2.2 Analog-to-digital Conversion

The analog-to-digital conversion block is the 2nd step in the coefficients computation module.
Figure 15 shows the implementation of the conversion block code based on the Bilinear
Transform method. This portion of code belongs to the function "void bilinear 0", which can
be found in the file "bilinear.cn in the digital Jilters package. The bilinear conversion
function takes the analog poles, zeroes and static gain computed in the previous step and
computes the corresponding digital poles, zeroes and static gain.

3.3.2.3 Factorization

Factorization of the zeroes and poles of the discrete transfer function obtained from the
analog design is done using an expansion formula. Using the discrete-time transfer function
given in Equation (17), the poles and zeroes of the IIR filter are the roots of the denominator
and numerator polynomials respectively. The expansion formula may be expressed as
follows

Cn+\ ~ Cn+1 Cn (72)

where c„ are the computed coefficients and em are the roots of the polynomial. The variable
n is the order of the polynomial and is decremented by one at each iteration. The variable m
equals the order of the polynomial (i.e. n = m for the first iteration) and stays constant for a
set of iterations. The factorization will yield n+1 coefficients where n is the filter order.
Figure 16 shows the implementation of the expansion formula. This portion of code belongs
to the function "void coeffO" included in the header file "Filter.h".

27

// discretization of the zeroes

for(i = 0;i < M;i++)
zd[i]=z[i];

for(i = M;i < N;i++)
{

zd[i].Q=-1.0;
zd[i].1=0.0;

}

for(i = 0;i < M; i++)
{

zd[i] = divc(2.0 + (zd[i].Q * Wc/Fs),zd[i].I * Wc/Fs ,2.0 - zd[i].Q
* Wc/Fs ,-1.0 * zd[i].I * Wc/Fs);

zd[i] = set_to_zero(zd[i]);
tempNKd = multc(tempNKd.Q,tempNKd.I,(2.0*Fs/(Wc)-z[i].Q),

(-1.0*z[i].I));
tempNKd = set_to_zero(tempNKd);

}

// discretization of the poles

for(i = 0;i< N; i++)
{

pd[i] = divc(2.0 + (p[i].Q * Wc/Fs),p[i].I * Wc/Fs ,
2.0 - p[i].Q * Wc/Fs ,-1.0 * p[i].I * Wc/Fs);

pd[i] = set_to_zero(pd[i]);
tempDKd = multc(tempDKd.Q,tempDKd.I,(2*Fs/(Wc)-p[i].Q),

(-1.0*(p[i].1)));
}

tempKd = dive(tempNKd.Q,tempNKd.I,tempDKd.Q,tempDKd.I);
Kd = (multc(tempKd.Q,tempKd.I,K.Q,K.I)).Q;

Figure 15 Bilinear transform analog-to-digital conversion algorithm

num = multc(c[n].Q,c[n].I,e[m].Q,e[m].1);

c[n+l].Q = c[n+l].Q - num.Q;

c[n+l].I = c[n+l].I - num.1;

if(n > 0)
return coeff(&c[0],e,n-l,m);

else
return 0;

Figure 16 Expansion formula algorithm

28

The function "void coeffQ" is called by the coefficients computation modules after the
analog-to-digital conversion step. The function will fill the empty array cD[n+l], where n is
the order of the IIR filter with the desired filter's coefficients. More information about this
subroutine is included in the user's guide.

3.3.3 IIR signal processing module

The IIR signal processing module has been implemented based on the Direct Form I
implementation of the difference equation presented in Section 3.1. This signal processing
module can be found in the package digitalJilter under the name of IIRDFI.

The signal processing module computes the output of a system using the IIR filter
coefficients generated by the coefficients computation module. The input test signal used
was an impulse sequence.

Figure 17 shows the implementation of the IIR signal processing algorithm. Details on how
to execute the IIR filter modules and signal processing module are described in Section 4.3.4.

29

for(i=0;i<numcoef;i++)
coeffden[i] = dive(aO.Q, aO.I, coeffden[i].Q,coeffden[i].I);

for(i=0;i<numsamples;i++)
{
sumnum.Q=0.0;
sumnum.1=0.0;
sumden.Q=0.0;
sumden.1=0.0;

for(j =0;j<numcoef;j ++)
{
indx = i - j;
if(indx < 0) break;
else

{
sumnum.Q += coeffnum[j].Q * samples[indx];
sumnum.I += coeffnum[j].1 * samples[indx];

}
}

for(j=l;j<numcoef;j++)
{
indx = i - j;
if(indx < 0) break;
else

{
sumden.Q+=multc(coeffden[j].Q,coeffden[j].1,

output[j-1].Q,output[j-1].1).Q;
sumden.I+=multc(coeffden[j].Q,coeffden[j].I,

output[j-1].Q,output[j-1].I). I;

}
}

for(j=numcoef-l;j>0;j—)
output[j]=output[j-1];

output[0].Q=sumnum.Q-sumden.Q;
output[0].I=sumnum.I-sumden.I;
>

Figure 17 IIR signal processing module algorithm

30

4 FINITE IMPULSE RESPONSE FILTERS

4.1 FIR LTI systems

The FIR signal processing module implements an FIR structure called the Direct Form to
process digital signals. For FIR systems, the transfer function H(z) has no poles except at

z = 0. Thus, H(z) is simply a polynomial in z'1 of the form

M

I
*=o

H(z) = £ hkz~k = h^ + 1\z~x + f^z'2 +... + hMz' M (73)

The output of such a filter is

M

*=o (74)
= 1% + hyX(n -1) + hjX{n - 2)...hMx(n - M)

which is the computational sum introduced in Section 2.2.

4.1.1 Flow diagrams for non-recursive structures

The flow diagram shown in Figure 18 illustrates the convolution sum that relates an FIR
filter's output to its input. This structure is called the Direct Form. Unit delays are denoted by
z_1 as shown in the figure below

x[n
Z1 Z1 z-1

ho hi h2 IB

J h 1 h) *(

f-\

hM-i

r-\

hM

e—4>
y[n]

Figure 18 Flow diagram of the Direct Form realization of an FIR filter

Table 4 shows the computational requirements of Direct Form implementation of an FIR
filter [3].

31

Number of multiplications
Number of additions
Number of delays

N + 1 per output sample
N per output sample
N

Table 4 Computational requirements of the Direct Form I structure of FIR filters

4.2 FIR filter design

Recall for IIR filters that the design techniques were based on transformation of continuous-
time IIR systems into discrete-time systems. In contrast, FIR filter design is almost entirely
restricted to discrete-time implementation. Consequently, the design techniques for FIR
filters are based on directly approximating the desired frequency response of the discrete-
time system. Furthermore, most of these approximation techniques avoid the problem of
factorization that complicates the design of IIR filters. In the context of this project, three
techniques have been implemented to compute the FIR filter coefficients of interest: the
"Frequency Sampling Design" technique; the "Design by Windowing" method; and the
"Parks-McClellan" method. The following sections introduce these three methods.

In addition, the design of a Gaussian filter and a digital integrator is included in this section.
A Gaussian filter and a digital integrator are used in the premodulation stage of a Gaussian
minimum shift keying (GMSK) modulator that is to be implemented in the ROBR.

4.2.1 "Frequency Sampling Design" filter module

The "Frequency Sampling Design" method is a straightforward design procedure. The
frequency response of an ideal filter is sampled and each sample of the frequency response is
a coefficient. Figure 19 shows the frequency response of an ideal low-pass filter. To get the
values of the coefficients in the time domain, an IDFT is performed on the samples collected
[1][3][5].

Hd(co)

-7C 71 CO

Figure 19 The desired frequency response Hd(a>) of an ideal low-pass filter

32

The desired frequency response is uniformly sampled at N equally spaced points between 0
and 27i to yield

(i*\
H(k) = Hd k = 0,l,...,N-l (75)

v J

These samples constitute an N-point DFT, whose inverse is the impulse response of an FIR
filter of order N-l:

h[n] = —YdH(k)eJ2*klN (76)

The inverse DFT can be modified to take advantage of symmetry conditions. Table 5 shows
adapted IDFT formulas to the four types of FIR filters. [5]

Im. h[alforn= 0,1,2,..., N-l

h[n] symmetric
Nodd

1 - tf(0) + £2tf(*)cos
t=i

2n(n-M)k
N

h[n] symmetric
Neven

1 f (N£tx

cos
2n(n-M)k

N

h[n] asymmetric
Nodd

±iT2H(k)sm 27t{M-n)k

N

h[n] asymmetric
Neven

1 f f N\ {NI2)-\
^j#lyJsin[^M-n)]+ £ 2H(k)sin 2n(n-M)k

N

Table 5 Inverse Discrete Fourier Transform formulas for FIR Design

In this project, the first type and the second type of FIR filter have been implemented for a
low-pass filter with symmetric impulse response.

4.2.1.1 Gibbs phenomenon

One problem related to the approximation methods used to produce FIR filter coefficients is
Gibbs phenomenon. Figure 20 shows the amplitude of the frequency response and the power

33

spectrum of a low-pass FIR filter affected by Gibbs phenomenon. The coefficients of the
filter were computed with the "Frequency Sampling Design" method. The frequency
response has an oscillating behaviour that is more pronounced near the edge of the passband.
This behavior is known as Gibbs phenomenon and is the result of approximating a
discontinuity in the desired frequency response. In [3] it is noted that if a function with a
discontinuity is approximated by a Fourier series, there is an overshoot in the region near the
discontinuity. As the number of Fourier series terms increases, the squared error decreases
and approaches zero as the number of terms approaches infinity. However, the maximum
value of the overshoot, and therefore the maximum value of the error, do not go to zero but
approaches a constant value of 11 % of the size of the discontinuity. In the "Frequency
Sampling Design" method, the overshoot may approach approximately 18% of the
discontinuity [3].

4)

1 i! ; ;
 ■] ■

 i ' " ' "
■ 1

 ■'••■ -:i \ ■

 -VVvV--- .----i
o ai 0.2 0.3 o.4 oj a« 0.7 at 0.9 1

normalized frequency

(a)

CD
■o

\

 ; ;]ijlf ftp
11 1

-1 1
j

1

(

0 0.1 0.2 0.3 0.4 as at 0.7 ai 0.9 1

normalized frequency

(b)

Figure 20 (a) Frequency response of an FIR filter affected by Gibbs phenomenon
(b) Power Spectrum of an FIR filter affected by Gibbs phenomenon

4.2.3 "Design by Windowing" filter module

The "Design by Windowing" method begins with a desired frequency response that can be
represented as

#,(0=fX["K>a (77)

where hd[n] is the corresponding impulse response sequence. Let Hd(ejm) be an ideal low-
pass filter with frequency response

34

(1 0 < n < M
Hd(ejm) = (78)

0 otherwise

where M is the filter order. As in the "Frequency Sampling Design" method, the impulse
response of the ideal frequency response can be obtained by performing an inverse Fourier
transform.

hd[ri\ = ^-)Hd{eJm)d(0 (79)
2K -n

However, to improve the impulse response of the filter and to reduce Gibbs phenomenon the
ideal impulse response is truncated using a window. The simplest way to obtain a causal FIR
filter from hd[n] is to define a new system with impulse response h[n] given by

fr , [hJn] 0<n<M
h[n] = \ dl (80)

0 otherwise

where M is the order of the transfer function polynomial. Thus, (M +1) is the length of the
impulse response. Alternatively, we can represent h[n] as the product of the desired impulse
response and a finite-duration "window", w[n],

h[n] = hd[nMn] (81)

This multiplication truncates the ideal infinite impulse response, hdfnj, to obtain a finite
impulse response, h[n], with less imperfection, thus reducing the effects of Gibbs
phenomenon. In the frequency domain, Equation (81) can be expressed as

H(eJa) = — \Hd{ei<a)W{eic°-$)dG (82)

That is, H(eJm)\s the periodic convolution of the desired ideal frequency response with the
Fourier transform of the window. Thus, the frequency response H(eJ<a) will be a "smeared"
version of the desired response Hd{eJa).

Some commonly used windows [1] are shown in Figure 21 and their equations listed in Table
6. The Hamming window used for this project is shown in red in Figure 21.

35

Commonly used windows

Bartlett
Blackman
Hamming
Hanning
Rectangular

0 10 20 30 40 50 60 70 80 90 100
(M-1)/2 M-1

Figure 21 Commonly used windows

Window Window equation
Rectangular fl, 0<n<M

w(ri) = <
[0 otherwise

Barlett (triangular)

w(ri) = «

2«/M, 0<n<M/2

2-2n/M MI2<n<M

0 otherwise

Hanning \0.5-0.5cos(27m/M) 0<n<M
w(ri) = <

[0 otherwise

Hamming \0.54-0.46COS(2MI/M) 0<n<M
w(ri) = <

[0 otherwise

Blackman f0.42 -0.5cos(2^7/M) + 0.08cos(4^7IM) 0<n<M
w(ri) = <

[0 otherwise

Table 6 Commonly used window functions

Figure 22 shows the improvement obtained with the "Design by Windowing" method as
compared with the "Frequency Sampling Design" method. The overshoot near the
discontinuity, in the passband and in the stopband, has been considerably reduced using the
"Design by Windowing" method.

36

1.4

1.2

0.6--

0.4

0.2

 f. -*—.-.

I ,' \ I I I

 1 L j 1

! i ! !

1 1 I 1
1
1
1
!

1
1
1
!

I
I
I
!

:::!::i"i'T"
I Ml. I I i iu\ i i
! li^Vvk/-,'-, C\i-VU.V'JV-l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
w

(a)

20

-20

R -40-

•60

•60

-100

I I \ I I 1 I

1 1 IU 1 1 1 1

i i r —r—;—r|
1 1 IM

: : : i
i i i 1 T !
i i i
i i i
i i i

i
i
i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
w

(b)

Figure 22 Comparison between the "Frequency Sampling Design" and "Design by
Windowing" methods for FIR filter design, (a) Frequency response, (b) Power
spectrum

The power spectrum on the right side shows that the attenuation in the stopband has been
improved by more then 20 dB.

4.2.4 Parks-McClellan filter module

While the design of FIR filters with the "Frequency Sampling Design" method with or
without windowing is straightforward, there are a number of limitations. The "Parks-
McClellan" algorithm yields optimal filters and offers more control on certain regions of the
frequency response of the filter. The Parks-McClellan algorithm is based on expressing the
filter design problem as a problem in polynomial approximation [1] which is described
briefly in the next section.

4.2.4.1 Chebyshev approximation

Given the problem of designing a low-pass filter with specifications such as those shown in
Figure 3, the Parks-McClellan algorithm considers that the desired frequency response of a
filter may be approximated by a c'th-order polynomial in coso) as follows

P(a)) = J^ak(cosco)k (83)
jfc=0

37

where c = KC , N is the number of samples of the filter impulse response, and coefficients

ak are chosen so as to yield a P{co) which is optimal in a sense that is defined below.

D(a>)

1+5!

1-
l-6f

8,~
H h
Op C0a 7C ®

Figure 23 The desired frequency response D(co) of a low-pass filter

Consider D(co) to be the desired frequency response, also shown in Figure 23, so that

D(co) =
for 0 < co < cop

for co„<co<n (84)

and let W(co)be the weighting function for the approximation error over each of the intervals
that the filter is defined,

fl for 0 < a < co„
W(co) = { p

I öj S2 for coa<co<n
(85)

where h\ and 82 are the amplitude of the passband and stopband ripple respectively. The error
made by the approximation oiD(co) by P(co) can be computed by [1][6][7]

E(co) = W(co)[D(o))-P(oo)] (86)

The weighted error function, E(co), the weighting function W(co), the desired frequency
response D(a>) and the approximation polynomial P(co), are defined for the same discrete
subset of frequencies taken from the interval 0 < co < n. For a low-pass filter, these four
functions will be defined over 0 < co < cop and coa<co<n as indicated in Equations (84)

38

and (85). The subinterval [Cometh] is the transition band of the filter. As E(eo), W(co),
D(<y) and P(CD), are not defined over the transition band, the Parks-McClellan method [1]
allows P(co) to take any shape in this band to achieve its optimum approximation and meet
the filter specifications. The criterion used in this design procedure is the Chebyshev
Criterion [1] where within the frequency intervals of interest, P(co) is chosen to minimize
the maximum weighted approximation error. This can be expressed by

min maxl^H (87>
A[n]:0Sn£Z. I aeF J

where F is the closed subset of 0 < co < n over which the filter is specified (i.e. 0 < a <, cop

and CDa ^ 0) ^ n). Thus, the method is to seek the set of frequencies that produce the impulse
response values that minimize the error. These impulse response values are then used to
compute the coefficients of a desired filter. An IDFT will be performed on the impulse
response values to give the coefficients of the filter in the time-domain. A weighting factor
may be associated with each frequency subinterval (i.e. Q<eo£a)p and (oa<(o<n for a
low-pass filter). The general idea for using a weighting factor is to exaggerate the error of the
approximation. The algorithm, in turn, will try to produce a better approximation for bands
with the higher weighting factor by minimizing this amplified error. This results in more
iterations to compute the approximation but a more accurate response is achieved in the
higher weighted band.

Parks-McClellan applies the Alternation Theorem from approximation theory to minimize
the error. The Alternation Theorem is described in the next section.

4.2.4.2 Alternation theorem

The Alternation Theorem states that if the frequency response of a filter is represented by a
linear combination of c cosine functions, as expressed in Equation (83), the best-weighted
Chebyshev approximation to a desired frequency response, D(co) is achieved if the weighted
error function E(o>) exhibits at least c + 2 extremal frequencies iaFp. An extremal
frequency is the frequency at which a ripple (either in the passband or the stopband) is at its
maximum or minimum value. Fp is the subset of frequency intervals over which the

passband and stopband are defined. Thus, there are at least c + 2 frequencies in Fp such that

ax < o)2 <... < <oc+2 and such that E^) = -E(eoM) = ±E for / = l,2,...,c + l [1]. To find the
extremal frequencies from the discrete subset of potential extremal frequencies Fp, the
Parks-McClellan method uses the Remez Exchange algorithm. The Remez Exchange
algorithm is a set of conditional statements applied to the potential extremal frequencies
contained in Fp. Based on the Chebyshev error criterion, the Remez Exchange algorithm will
determine if a frequency is an extremal frequency or not. The c+2 extremal frequencies

39

found by the algorithm are then used to compute the filter frequency response with the
approximation function P(co). The Remez Exchange algorithm is described further in [6] [7].

From the Alternation Theorem we can write [7]

E{a>l) = W{a>l)[£>(<»,,)-/>(<o,)]=(-l)'+,<? , i = l,2,...,(c + 2) (88)

where 8 is the optimum error. Parks and McClellan [1][6][7] found that for the given set of
the extremal frequencies, 8 is given by the formula

c+2

Ivw
_ *-i

k W{fok)

where
c+2 c+2 1 **=n——
4-1 {Xk —Xjj
4**

where

*-i

x = coseo

(89)

(90)

and

x, =coseoi (91)

Parks and McClellan used the Lagrange interpolation formula [1][6] to obtain

c+l

£k/(*-*,)]ct
rt") = *bi <92>

(93)

Q=D(«»)-i-^- (94)

C+l 1

^-riT-1-^0^*-^) (95)
4-1 \Xk ~Xi)
i*k

40

Figure 24 shows an example of a low-pass filter described by the Parks-McClellan method.
A flow diagram of the algorithm can be found in [1].

It };■•''■■■
■>4:

[l+*.
'.:"1'

M I $■'/■

if 0.8

!

$M?

i

04

fai 0.2
|r~~^""
^s."V*';:-;-'

? 0

Optimal equiripple filter

01 0.2 0 3 0 4 0.5 0.6 0.7
normalized frequency

0.6 . 0.9 . 1

Figure 24 Typical example of a low-pass filter approximation that is optimal according
to the alternation theorem for c = 7

4.2.5 Gaussian digital filter module

A digital GMSK modulator is to be implemented in the ROBR testbed. One implementation
of the GMSK modulator requires a Gaussian filter and a digital integrator as shown in Figure
25. As a result, a Gaussian filter is also implemented using an FIR filter design technique.
The coefficients computation module uses the "Frequency Sampling Design" method to
calculate the coefficients of a Gaussian filter. However, instead of sampling the ideal
frequency response of a low-pass filter, a Gaussian distribution is sampled. The impulse
response of a Gaussian filter is expressed as [12]

where £, =
n

V21n2
(96)

or

41

A(0 =
2<T2r2

\2noT
a -■

2KBT
(97)

where B is the 3dB bandwidth of the Gaussian filter and T is the bit period. The sampling of
the Gaussian distribution is done over the frequency domain expression obtained by taking
the Fourier Transform of Equation (96) giving

H(o)) = e
1 ai

_ 0 4k2B2

(98)

Figure 26 shows Gaussian frequency response for various values of BT product.

NRZ
sienal

hH Integrator Gaussian
Filter

cos(nw0)

J
-sin(nw0)

cos(nw0+e)

Figure 25 The premodulator stage of GMSK digital modulator includes a digital
integrator followed by a Gaussian filter

H(a>)withBr=1

H(co)\A«thBT=0.5

H(a>)withBr=0.25

normalized frequency

Figure 26 Frequency response for a Gaussian filter

42

4.2.5.1 Digital integrator module

As mentioned in Section 4.2.5, a GMSK modulator is to be implemented in the ROBR and
requires a digital integrator. As a result, the implementation of a digital integrator module is
included here. The implementation of the digital integrator is very simple. The output for a
given moment, yk, of such a filter is the summation of the present input xk and all the
previous or past inputs, which can be expressed mathematically as

(99)

4.3 FIR filter module implementation

4.3.1 System

As with the IDR. filter modules, the FIR filter modules implemented consist of two
components, a coefficients computation module and a signal processing module. The
coefficients computation module is subsequently broken down into two stages, a sampling
step and the computation of an inverse discrete Fourier Transform. The coefficients
computation module takes the filter specifications, computes the desired FIR design and
generates the coefficients of the filter. The signal processing module takes an input signal
and processes it using the coefficients computed by the coefficients computation module.
Figure 27 shows the architecture of the FIR filter modules.

Filter specifications

COEFFICIENTS
COMPUTATION

MODULE

Step 1: Sampling of an ideal filter

Obtain N samples

Step 2: Perform IDFT

Obtain N coefficients

Input
signal

SIGNAL PROCESSING
MODULE

Output
signal

Figure 27 Block diagram of FIR filter module implementation

43

The three design methods described earlier have been implemented to compute FIR filter
coefficients. The "Frequency Sampling Design" method, the "Design by Windowing"
method and the "Parks-McClellan" method are described in the following sections. In
addition, the implementation of filter modules for the Gaussian filter and the digital
integrator are presented.

4.3.2 FIR coefficients computation modules

For FIR filters, the coefficients computation modules generate the coefficients hk identified
in Equation (73). The coefficients are subsequently used in the FIR signal processing
modules to process a digital signal. Five FIR coefficient computation modules have been
implemented. The implemented modules are listed in Table 7.

Filter Design Module Name
Frequency Sampling Design method Freqsampling

Design by Windowing method Hamming
Park-McClellan Method Remezex

Gaussian filter Gauss
Digital Integrator Dintegrator

Table 7 FIR filter types implement by the corresponding modules

More information about how to use each module can be found in the user's guide included
with the software developed. All FIR coefficient computation modules, except the digital
integrator module, require two input parameters: the digital cutoff frequency and the
sampling frequency.

4.3.2.1 Frequency sampling design method module implementation

The design method starts in the frequency domain and is separated into two steps. To apply
the "Frequency Sampling Design" method, a vector is created which contains the frequency
response samples of the desired low-pass filter. The size of this vector will be the same as the
number of coefficients to be computed. This operation is equivalent to sampling an ideal
frequency response. Once this vector is built, an IDFT is then performed on the vector's
elements to compute the coefficients of the filter in the time domain. The implementation of
these two steps to design a low-pass filter is described in the next sections.

4.3.2.1.1 Sampling the ideal frequency response

The first step in designing an FIR filter is to build the vector of frequency response samples.
For a low-pass filter, the elements which belong to the passband of the ideal frequency
response will be set to T and the elements which belong to the stopband of the ideal

44

frequency response will be set to '0'. The number of elements set to '1' or '0' will depend on
the normalized cutoff frequency and on whether the number of coefficients is odd or even.
The number of elements to set to ' 1' in the frequency response vector of a low-pass filter can
be computed [5] using the program code shown in Figure 28.

if(num_taps%2) //odd number of coefficients case
numsamples = ceil(num_taps * Wd/(2*PI) - 0.293);

else
numsamples = ceil(num_taps * Wd/(2*PI) - 0.207);

Figure 28 Computation of the number of samples to include in the passband of an
ideal low-pass filter

The other elements of the vector will be set to '0' to represent the stopband. The creation and
initialization of this vector is equivalent to sampling an ideal frequency response because
each element of this vector may be viewed as a sample. The program code needed to build
this vector is shown in Figure 29. Thus, an example of a frequency response vector could be
H[n] = [1,1,1,1,1,0,0,0,0,0,] for a low-pass filter with 10 coefficients.

//sampling of the ideal frequency response

for(int i=0;i<numsamples;i++)
{

H[i] = 1.0;
}

for(int i=numsamples;i<num_taps;i++)
{

H[i] = 0.0;
}

Figure 29 Sampling of an ideal low-pass filter frequency response

4.3.2.1.2 Implementation of the IDFT

The IDFT is performed on the frequency domain samples of the ideal low-pass filter
generated in the previous section. The appropriate expression of the IDFT is used depending
on whether the number of coefficients is odd or even. The algorithm is listed in Figure 30.

45

Float temp = 0;
Float mid_pt = (num_taps-l.0)12. 0;
Float x;
if(num_taps%2) // N odd

{
for(int n=0;n<num_taps;n++)

{
temp = H[0];
x = 2 * PI * (n - mid_pt)/num_taps;
for(int k=l;k<((num_taps-l)/2);k++)

temp+=(2.0*cos(x*k))*(H[k]);
h[n] = temp/num_taps;
fprintf(outputfile,"%f\n",h[n])///printing the

coefficients in an output file

}
}

else // N even
{
for(int n=0;n<num_taps;n++)

{
temp = H[0];
x = 2 * PI * (n - mid_pt)/num_taps;

for(int k=l;k<=(num_taps/2) - l;k++)
temp+=(2.0*cos(x*k))*(H[k]);

h[n] = temp/num_taps;
fprintf(outputfile,"%f\n",h[n]);

}
)

Figure 30 Inverse discrete Fourier transform algorithm performed on the ideal low-
pass filter frequency response samples

4.3.2.1.3 Design by windowing

The only difference between the "Design by Windowing" method and the "Frequency
Sampling Design" method is that, for the design by windowing method, the result of the
IDFT will be multiplied by a vector containing the samples of a Hamming window. The
equation to compute the samples of a Hamming window is given in Table 6 in Section 4.2.3.
The computed samples of the Hamming window will be stored in a vector of N elements,
where N is the number of filter coefficients. Then the coefficients obtained from the
computation of the IDFT, and stored in h[n], will be multiplied by this vector, as shown is
Figure 31.

46

for(int k=l;k<((num_taps-l)/2);k++)
temp+=(2.0*cos(x*k))*(H[k]) ;

//multiplying the time domain coefficients by the Hamming window

h[n] = temp/num_taps * (0.54 - 0.46*cos(2*PI*n/num_taps));

//printing the coefficients in an output file

fprintf(outputfile,"%f\n",h[n]);

Figure 31 "Design by Windowing" algorithm

4.3.2.2 Parks-McClellan method implementation

The implementation of the Parks-McClellan FIR coefficients computation module is included
in the package digital [Jilters under the directory named remezex. The implementation is
separated into two files: remezex.c and remez.c. The library remez.h is required by these two
files and contains the appropriate constants and functions used by them. The file remez.c and
remez.h are external files that were first created by Jake Janovetz and can be used under the
GNU General Public license restrictions. The source code implemented by Jake Janovetz
provides a very good implementation of the Remez Exchange algorithm and forms the basis
of the implementation of the reconfigurable module. The GNU General Public License
allows anyone to use and modify a file or a portion of code placed under the terms of this
license. The GNU General Public License has been included in the digital Jilters package.
To find out more about the terms and agreements of this license, the reader is referred to
http://www.gnu.org/licenses/gpl.html on GNU's web site.

The task of the file remezex. c is to acquire the filter design parameters entered by the user,
initialize the variables used by the module and make the function calls to compute the filter
coefficients. It is noted that remezex.c will normalize the input digital frequency over the
interval [0,0.5], as is required for the implementation of the Parks-McClellan method [3].
Then, the file remezex.c fills three arrays depending on the design parameters entered.

The array desiredf] contains the magnitude of the sampled ideal frequency response. For a
low-pass filter, there are two elements in the array desiredf] to represent the magnitude of the
frequency response in the passband and in the stopband respectively. In this implementation,
the first element is initialized to T to represent the magnitude of the frequency response in
the passband. The second element is initialized to '0' to represent the magnitude of the
response in the stopband.

47

The array weightsfl contains floating point values representing the weights given to the
passband(s) and stopband(s). These weights will determine the importance to give to the
corresponding frequency band in the computation of the algorithm. A large value given to a
weight corresponding to a specific band will put the emphasis of the algorithm on producing
a better approximation of the ideal frequency response in this band compared to the
approximation made in the other bands [1]. For a low-pass filter, the weights[] array contains
two elements. The first one specifies the weighting assigned to the passband and second
specifies the weighting assigned to the stopband. For this implementation, each frequency
band was given the same weighting and thus, both elements are set to ' 1'.

The array bandsfj contains the edge frequencies which delimit the passband and the
stopband of the low pass filter's frequency response. This array contains four normalized
frequency values to delimit the passband and the stopband and should be in the form, [0, (fy,
(Oa, 0.5]. In this implementation, the user enters the desired normalized cutoff frequency, W&
and a value of cop = Wd - 0.025 and coa = Wd + 0.025 is computed for the array bandsfj.

The length of the transition band between the passband and the stopband, for this module,
has been arbitrarily chosen to be 0.05 Hz/Hz.

Figure 33 shows the contents of remezex.c. After, filling the three required arrays, remezex.c
makes a function call to void remezO, the function which computes the filter coefficients
using the Remez Exchange algorithm. voidremezQ is implemented in the file remez.c.

desiredtO] = 1;
desired[1] = 0;

weights[0] = 1;
weights[1] = 1;

bands[0] = 0;
bands[1] = Wd-0.025;
bands[2] = (Wd + 0.025);
bands[3] = 0.5;

remez(&h[0],num_taps, 2, bands, desired, weights,BANDPASS);

Figure 32 Content of the file remezex.c

4.3.2.3 Gaussian filter implementation

The implementation of the Gaussian filter coefficients computation module is based on the
"Frequency Sampling Design" method. Instead of computing the samples of the frequency
response of an ideal low-pass filter, samples for a Gaussian distribution are calculated based

48

on Equation (98). Figure 32 shows the portion of code that is used to fill in the array of
frequency response samples, H[i].

//computing the sampling step
step = (float)(Fs/num_taps);

//sampling of the gaussian curve
for(int i=0;i<num_taps;i++)

{
H[i] = exp((-1.0/4.0)*(2.0*PI*i*step)*

(2.0*PI*i*step)/(K*K*B*B));
}

Figure 33 Sampling algorithm of a Gaussian distribution

The next step of the implementation is to compute the IDFT of the sampled curve to get the
filter coefficients as was done for the "Frequency Sampling Design" method implementation
and the "Design by Windowing" method implementation.

4.3.3 FIR signal processing modules

The FIR signal processing module has been implemented based on the convolution equation
introduced in Section 4.1. This implementation is based on the Direct Form structure
presented in Section 4.1.1. The signal processing modules can be found in the package of
filter modules under the name offirdf.

Figure 34 shows the implementation of the algorithm of the FIR signal processing module. A
buffer is used to store the input samples required for the convolution. First, the previous input
samples are shifted down in the buffer. The current input sample is then read from an input
text file and stored at the beginning of the buffer. Then, a convolution sum, as described in
Equation (4), is performed to produce an output sample which is stored in an array. The
output array is printed to a text file once all the input samples have been processed. This
implementation is able to operate in real time as each input sample is read and processed to
directly produce an output sample.

49

while(fscanf(inputfile,"%f",Ssample)!=EOF)

//reading input sample from the input file
{

for(j=numcoef-l;j>0;j—)
{
if(indx-j < 0) continue;

inputBuffer[j]=inputBuffer[j-1];
)

inputBuffer[0]=sample;

//convolution operation to produce output sample

output=0;
for(i = 0; i< numcoef;I++)

{
if(indx-i < 0) break;
output+=coeff[i]*inputBuffer[i] ;
}

fprintf(outputfile,"%f\n",output);
indx++;

Figure 34 FIR signal processing module algorithm

4.3.4 Use of the filter and signal processing modules

The following is an example of how the modules are used to generate coefficients for a low-
pass Butterworth filter. The coefficients computation modules can be executed from the
prompt of a console as shown in Figure 35. The module butter takes four arguments as input
design specifications, the filter's order, the normalized cutoff frequency, the sampling
frequency and the number associated with the method used to compute the discrete design.
The filter order is entered as an integer value. The normalized cutoff frequency is entered as
a floating point number between 0.0 and 1.0 for the Butterworth filter. The sampling
frequency is a floating point number and is normalized to 2.0 in this example. The units of
the normalized cutoff frequency and the sampling frequency are Hz/Hz. It is noted that the
normalized cutoff and sampling frequencies are relative. As a result, the filter module allows
for scalability of the filter design and generates the same coefficients for filters with the same
ratio of cutoff frequency to sampling frequency. The last parameter specifies the method
used to compute the discrete design. A T is entered to select the Impulse Invariance
method, and a '2' is entered to select the Bilinear transformation.

50

R Command Prompt

Microsoft Windows 20ÖÖ [Version b,L^ „„.
<C) Copyright 1985-2000 Mierusoft Corp.

Figure 35 Command line for Butterworth filter module

After the computation of the coefficients is complete, the module generates an output file,
"butterout.tot" with the coefficients of the filter. Figure 36 shows an example of the
coefficients computation module output file. The order of the filter computed is printed on
the first line. Then, on the second line, the digital static gain is printed and finally, the
coefficients of the filter are printed in four columns. The two left most columns contain the
real and imaginary parts of the numerator coefficients (6*). The two right most columns
contain the real and imaginary parts of denominator coefficients (a*).

| i§ butterout.txt - Notepad 7! i&k.. * IPN
j: File Edit Format Help

; 5.000000 Order
Gain

cients

El

jB.

u. u.
IQ.0!
0.2*
0.5;

10.51
\Q.2i
;0.0!

It. 1 U<J

52786 0.000000 1.000000 0.000000
53932 0.000000 0.000000 0.000000
»7864 0.000000 0.633437 0.000000
»7864 0.000000 0.000000 0.000000
53932 0.000000 0.055728 0.000000
52786 0.000000 0.000000 0.000000

'— Denominator Coeffi

III
Numerator Coefficients

Figure 36 Example of an output file generated by the coefficients computation
modules.

51

The signal processing modules can be executed from a console prompt as in the case of the
coefficients computation modules. Figure 37 shows an example of how to execute the signal
processing module for an IIR filter. The first argument of these modules is the file name of
the input samples. The second argument is the name of the text file which contains the
coefficients of the implemented filter design. The coefficients file is the output file obtained
from the coefficients computation modules (i.e."butterout"). The user's guide contains
information on the format of the input data file.

Command Prompt

lici'osoft Uindows 2006 [Uei-sion E. CO. 2195]
X> Copyright if;E5-2CGC Hioi-osi; t V. C:n i.

□Mx

_Sampk

Coefficients file

ä

Figure 37 Command line for executing an IIR signal processing module.

The output file generated by the signal processing module contains the output of the filter
used to process the input samples file. One output sample is printed on each line of the file as
shown in Figure 38. The first column contains the real part of the output and the second
column contains the imaginary part of the output. In the example shown in Figure 38, the
values of the imaginary part of the results are zero as a real signal was processed rather than a
complex signal.

Si IIRoutput.txt - Notepad 031*1
File Edit Format r Help

0.178370 0.000000
-0.160113 0.000000
-0.1R4SQ^ o.oftonnf)
0.053849 0.000000
0.137787 0.000000
-0.017965 0.000000 ,
-0.098050 0. 000000 — J

0.005989 0.000000
0.069173 0.000000
-0.001996 0.000000
-0.048722 0.000000
0.000665

1J

0.000000

Real Part

— Imaginary Part
Ü

Figure 38 Example of an output file generated by a signal processing module

52

5 DSP IMPLEMENTATION

The implementations of the filter modules described in the previous sections have been
targeted for a general purpose processor. In order to make use of these digital filter modules
in the ROBR and take advantage of their reconfigurability in "real-time", a DSP
implementation of the modules is required. For the DSP implementation, a DSP board
manufactured by Spectrum Signal Processing, Inc., was used. The DAYTONA DSP board is
a PCI dual processor board and contains two TMS320C6201 fixed point DSP chips. Only
one processor is used for the filter module implementation. Code development for the DSP
board is done in the ANSI C programming language. A compiler, code generator, and linker
are provided with the DSP board.

Two FIR coefficient computation modules and one FIR signal processing module have been
adapted for the DAYTONA DSP board. In all three cases, since the original module was
written in C, only minor changes were required to yield compatibility between the filter
modules and the DSP architecture. The coefficients computation modules implemented are
the "Design by Windowing" method and the "Parks-McClellan" method. The FIR signal
processing module implements the Direct Form structure shown previously in Section 4.1.1.

The DSP board is hosted in a PC with the WIN NT operating system. The host handles the
initialization, handshaking and downloading of processor code through the PCI bus. As
such, the integration of the filter and signal processing modules requires two different files: a
host program that controls the DSP and provides the user interface, and the DSP file which
implements the DSP program is responsible for processing the data.

5.1 Exchanging data between the Daytona and the host station

The DSP processor has both internal and external memory spaces available including internal
program and data RAM, external SSRAM, external SDRAM, and dual port RAM. For this
project, the memory used for the data exchange is the SDRAM of processor 0 on the Daytona
DSP board [9]. The SDRAM block of the processor goes from address 0x0200000 to address
0x02FFFFFF. The other memory spaces available on the DSP board are listed in Table 8.

Description Size Internal or External
Program RAM 64kB Internal
SSRAM 16MB External
I/O, boot 4MB External
SDRAM 16MB External
Processor Expansion
Module (PEM)

64kB External

Internal Registers 256kB Internal

Table 8 Memory configuration of the TMS320C6201

53

5.2 Static and determined length memory allocation

The static allocation of memory is done on the SDRAM block of the processor. Figure 39
shows the memory allocation for a typical filter module. Four 32-bit variables are used as
flags for each module. They are FlagJLeady, FlagData, Flag_Done, and OKMemory.
The addresses for the memory space are assigned in bytes so that consecutive 32-bit words
are addressed 4 bytes apart. The use of flags makes the synchronization between the host
program and the DSP possible. The flag FlagJLeady is set by the DSP to tell the host
program that the DSP is ready to compute data. The flag FlagData is set by the host to
signal to the DSP that data is ready to be transferred from the host. The flag Flag_Done is set
by the DSP to tell the host program that the DSP has finished its computations. The flag
OKJAemory is used by the DSP to tell the host program that the memory needed for the
computation has been successfully allocated. As shown in Figure 39 memory has been
allocated for Numjnput and Num_Coeff which are integer values that are used to store the
number of coefficients to be computed and the number of input data samples. Arrays are
allocated at addresses pointed to by Coeff and Data. The array Coeffcontains the coefficients
computed by the DSP that are transferred back to the host program. The array Data is used to
hold the input signal samples to be transferred from the host to the DSP. After the DSP has
performed the signal processing computation, the same area is used to store the computed
output signal. The host program will then be able to retrieve the output signal from the array
Data. Figure 40 shows a flow diagram of the handshaking between the host and the DSP.

»define Flag_Ready (UINT32*)(0x02000004)
#define Flag_Data (UINT32*)(0x02000008)
#define Flag_Done (UINT32*)(0x0200000c)
#define Num_Input (UINT32*)(0x02000010)
»define Num_Coeff (UINT32*)(0x02000014)
♦define OK_Memory (UINT32*)(0x02000018)
»define Coeff (float*)(0x0200001c)
»define Data (float*)(0x0200090c)

Figure 39 Static allocation of the variables in the SDRAM memory

54

Host

I nit flags to 0

Open and init
DSP

No, wait
No, wait

Transfer
input data

*. SetFlag_Data

SetFlag_Ready

DSP

No, wait

Figure 40 Flow diagram of the implementation of the filter modules

5.3 Dynamic memory allocation

The function call mallocO is a service provided by the run-time support library included in
the DSP compiler. mallocO extensively used in the reconfigurable modules because the size
of the arrays needed to store the data from the user is not known in advance. Memory is
dynamically allocated from a memory space defmed in the "sysmem" memory section of the
DSP. The sysmem memory section is created and allocated prior to the compilation and the
linking of the program in the link command file. In Figure 41, a portion of the memory map
generated by the linker shows that the "sysmem" memory section, which is 0x3000 bytes (or
12kB) in size, is allocated to begin at address 0x80002018.

55

**
TMS320C6x COFF Linker Version 2.00

**

MEMORY CONFIGURATION

name origin length used attributes fill

IVECS
I PROG
SSRAM
MPRAM
DL3
I REG
SDRAM
PEM
IVARS
I DATA

00000000
00000400
00400000
01400000
01600000
01800000
02000000
03000000
80000000
800c0000

000000400
OOOOOfcOO
000400000
000200000
OOOOcOOOO
000800000
001000000
001000000
OOOOcOOOO
000004000

00000200 RWIX
00001b80 RWIX
00000000 RWIX
00000000 RWIX
00000000 RWIX
00000000 RWIX
00000000 RWIX
00000000 RWIX
000050e8 RWIX
00000000 RWIX

SECTION ALLOCATION MAP

output
section

.vectors

page

0

origin

00000000
00000000

length

00000200
00000200

attributes/
input sections

isfp6201.o6x (.vectors)

.text 0 00000400
00000400

00001b80
000009c0 rts6201.1ib : memory.obj (.text)

.stack 0 80000000
80000000

00002000
00000000

UNINITIALIZED
rts6201.1ib : boot.obj (.stack)

.tables 0 80000000 00000000 UNINITIALIZED

.data 0 80000000
80000000

00000000 •
00000000

UNINITIALIZED
FIRmod.o6x (.data)

• bss 0 80002000
80002000

00000014
00000008

UNINITIALIZED
rts6201.1ib : exit.obj (.bss:c)

.aysmom 0 80002018
80002018

00003000
00000000

UNIHZXIALIZZD
rt»6201.1ib : ■ysaam.dbj (.syamon)

.cinit

.const

0

0

80005018
80005018

80000000

00000054
0000001c

00000000
rts6201.1ib : sysmem.obj (.cinit)

UNINITIALIZED

GLOBAL SYMBOLS

Address name address name

Figure 41 Sysmem memory section allocation in the DSP memory map.

56

5.4 Host program

The major function of the host program is to control the DSP board and act as the user
interface to the DSP board. The host program is responsible for reading the design
specifications of the filter module and passing them to the DSP. The Daytona Windows NT
Host Application Library (ALIB_HOST) provides several high-level functions that allow the
user to control the operations of the Daytona from a Windows NT host.

5.4.1 Host software functions

The library ALIB_HOST implements several host functions to control the Daytona board.
The following functions have been used in the filter modules' implementation.

FT_ControlO : to reset the board
FT_ErrorMessage() : to catch error message
FT_GetHandle() : to get handle to Daytona system resources
FT_Read() : to read from a system resource or host buffer
FT_SystemClose() : to close the DSP board
FT_SystemLoad() : to load the DSP code into the system
FT_SystemOpen() : to open the system
FT_Write() : to write to the system resources

5.5 DSP program

The DSP program contains all the data processing instructions. The algorithm of the original
modules has not been modified but the variables declared were changed into pointers in most
cases to be integrated for use on the DSP.

5.5.1 DSP software functions

As in the host program, library functions are provided for initialization, interrupts, and DMA
transfers. In this project, the only library function called in the DSP code is C6x_OpenC6x().
This function initializes the C6x processor, sets the wait states for external memory and
configures the page register. The page register contains the addresses of the memory spaces
that are available for each processor. The memory spaces are accessed through the PCI bus
[11].

57

6 RESULTS AND VERIFICATION

6.1 Methodology

The implementation of the filter modules has been verified with the Signal Processing
toolbox from MATLAB. Table 9 and Table 10 show which corresponding functions from
MATLAB have been used to verify the coefficients generated by the reconfigurable filter
modules.

IIR coefficient computation modu es
Filter types Reconfigurable Filter

modules
Function from MATLAB's

toolbox signal
Butterworth butter Butter
Chebyshev chebl chebyl, cheblap

Inverse Chebyshev cheb2 cheby2, che2ap
Elliptical ellip ellip, ellipap

Bessel bessel -

Table 9 Corresponding MATLAB functions for the IIR modules verification

FIR coefficient computation modules

Design method used and
Filter types

Reconfigurable Filter
modules

Function from MATLAB's
toolbox signal

Frequency sampling freqsampling -

Windowing hamming firl with hamming window
Parks-McClellan (optimal

equiripple filter) remezex Remez

Gaussian filter gauss -

Digital Integrator dintegrator -

Table 10 Corresponding MATLAB functions for the IIR modules verification

The signal processing modules for the IIR and FIR filters were compared with the
corresponding filter function from the Signal Processing toolbox. Coefficients generated by
the coefficient computation modules were provided to the appropriate signal processing
module to compute the response to an impulse. Subsequently, an FFT is performed using
MATLAB's FFT function on the output of the signal processing module which gives the
frequency response. Samples of the impulse function are used as the input to the signal
processing module. The samples are generated using MATLAB and are composed of 49
"zeroes" followed by a "one", followed by 49 "zeroes" in floating point representation.
Figure 42 is a plot of the impulse signal generated with MATLAB.

59

Test signal

0.9

0.8 -

0.7

0.6

lOi

0.4 -

0.3

0.2

0.1

1 1 1 i i 1 i i

J

;

i

!

;

j

1 1 i i i 1
10 15 20 25 30

Time units
35 40 45 50

Figure 42 Impulse signal generated with Matlab

Thus, the verification process was carried out as follows:

1- Computation of the coefficients with the coefficients computation modules
2- Computation of the coefficients with MATLAB' s toolbox
3- Comparison of the coefficients generated by the reconfigurable modules with the

coefficients generated by MATLAB
4- Processing of an impulse with the signal processing modules using the coefficients

computed by the coefficients computation modules
5- Processing of an impulse with the MATLAB's function using the coefficients

computed by MATLAB
6- Performing an FFT on both output generated by the filter modules and by MATLAB

functions.
7- Comparison of the frequency response yielded by the filter modules and by

MATLAB.

6.2 Results

6.2.1 IIR filter module verification

Appendix A shows the plots comparing the frequency response of the Butterworth,
Chebyshev, inverse Chebyshev, and elliptical filter modules with those generated by
MATLAB. The frequency response for the bessel filter module is also given. However, there
is no implementation of a digital bessel filter in MATLAB. In all cases, the responses show
a steeper rolloff for the higher order filters. Both coefficients computed by the filter modules
and by MATLAB's functions are identical for filter orders up to 15. In cases of more than 16

60

coefficients, the accuracy of the frequency response yielded by the coefficients starts to
decrease. This limitation may be caused by the rounding off of floating point number
variables with the large number of multiplication and addition operations used to compute
the filter coefficients.

6.2.2 FIR filter module verification

For FIR filters, a higher order filter corresponds to a higher number of coefficients. From
Appendix A, the three FIR filter design methods show that as the number of coefficients
increases, the transition between the passband and stopband is much steeper, as expected. To
illustrate this characteristic, an error curve is plotted showing the difference between the
frequency response of an ideal low-pass filter and the frequency response of the
reconfigurable filter for each filter design method. An example of an error curve for the
"Frequency Sampling Design" method with N=10 and N=30 coefficients is shown in Figure
43.

1.4-

1.2-

1-~

08-

0.6-

0.4-

0.2

Reconfigurable filter

Ideal low-pass filter

01 02 0.3 04 05 06 07 08 0» 1
normabed frequency

I <* -0.2

i

. I \ /
■■ '■■ 1

■ ' /

-^—■i :/. - 1\ 7:r;f

/I- r [

100 200 NO 4M
samples

too too

(a)

a«

0.4

J 0.»

0.1

0
&
i" r

4.4

•0.6

$&¥$-

0>)
200 WO 400 100

samples

Figure 43 Error curve for reconfigurable filter using the "Frequency Sampling
Design" method, (a) for N=10 coefficients, (b) for N=30 coefficients.

61

The spike in the error curve corresponds to the transition between the passband and stopband.
It is noted that for N=30, the spike is more compressed along the x-axis than for the N=10
case, indicating a faster transition between the passband and stopband.

As with the IIR filter modules, the frequency responses of the reconfigurable FIR filters are
also presented in Appendix A. The power spectrum for each of these filters is also shown.
In all cases, the FIR filters are designed to have a normalized cutoff frequency of 0.5.

The FIR coefficients computation modules that use the "Design by Windowing" method and
the "Parks-McClellan" method have been verified with MATLAB's respective functions and
are shown in Appendix A. It is shown that the reconfigurable filter modules yield the same
general shape of frequency responses as their respective counterpart in MATLAB. The FIR
coefficients computation modules for the "Frequency Sampling Design" method, the
Gaussian filter coefficients computation module and the digital integrator have not been
verified with MATLAB's toolbox because the corresponding functions in MATLAB were
not available.

As shown in the error curves, the "Frequency Sampling Design" method yields frequency
responses for which the transition between passband and stopband becomes steeper as the
filter order increases. A consequence of the steeper transition is an overshoot of the
frequency response at the start of the transition which measured approximately 11% of the
passband magnitude. The attenuation in the stopband is shown to start at -15dB and
gradually rolls off to approximately -30dB.

The "Design by Windowing" method yields better frequency responses with less ripple in the
stopband and in the passband, and smaller overshoot at the transition. Furthermore, the
results indicated significantly better attenuation in the stopband at around -50dB. However,
when observing the error curves in Table A10 of Appendix A, a wider spike suggests a more
gradual transition between the passband and stopband.

The frequency responses of the "Parks-McClellan" filters exhibited ripples in both the
passband and stopband as did the "Frequency Sampling Design" method. A difference in the
amplitude of the frequency responses between the reconfigurable filter module and the
MATLAB functions can be attributed to different values of the passband and stopband ripple.
With a greater stopband ripple allowed in the MATLAB case, less attenuation is noted in the
power spectrum when compared with the reconfigurable filter modules. The error curves for
the Parks-McClellan method demonstrated transitions between passband and stopband that
were comparable to the "Frequency Sampling Design" method. While the Parks-McClellan
method provides flexibility in setting the passband and stopband ripple, it is much more
computationally intensive. This may have significant implications when choosing a filter
design method for real-time processing requirements.

Frequency response and power spectrum curves are also plotted for a Gaussian filter with
BT=0.2 for N=10,20, and 30 coefficients. As mentioned in Section 4.3.2.2, the "Frequency
Sampling Design" method was used to implement the reconfigurable Gaussian filter module.

62

The results showed that while the main lobe did not change significantly as the number of
coefficients increased, more attenuation in the stopband was observed as N increased.

Results for the digital integrator module are also shown in Appendix A. The output curve
shows the integration of a bipolar input digital bit stream.

63

7 SUMMARY

This report describes a project to develop reconfigurable IIR and FIR filter modules for use
in the ROBR project. The theory needed to understand digital signals, LTI systems and filters
was introduced in Section 2. The concept of IIR and FIR filters was presented in Section 3
and Section 4. Both the IIR and FIR implementations were represented using the Direct Form
structure. Equations for the analog frequency response of various types of IIR filters were
presented. Examples include Butterworth, Chebyshev, and Elliptical filters.

The design methods used to implement IIR filters produce a discrete filter design from
analog design prototypes. Two methods have been used to implement IIR filters: the Bilinear
transformation and the Impulse Invariance method. These two methods perform a
transformation on an analog design to obtain a discrete design.

Methods used to produce FIR filters involve sampling, IDFT computation and an
optimization algorithm. Three design methods have been used to implement FIR filter
modules: the "Frequency Sampling Design" method, the "Design by Windowing" method
and the "Parks-McClellan" method. The "Frequency Sampling Design" method involves two
steps in the computation of the filter coefficients: building an ideal frequency response
vector, and computing an IDFT. A vector is a discrete sequence of elements. Building the
vector is equivalent to sampling the ideal frequency response. The "Design by Windowing"
method involves the same steps as the "Frequency Sampling Design" method except that the
result of the IDFT performed on the desired frequency response samples are subsequently
multiplied by a vector containing amplitude samples of a window function. A Hamming
window has been used for this implementation. The "Parks-McClellan" method is based on
the Alternation Theorem from optimization theory. The Remez Exchange algorithm is used
to find the optimal set of extremal frequencies. The goal of the method is to compute the
coefficients for the best approximation of a desired frequency response. The Remez
exchange algorithm is a set of conditional statements that, when applied, produce an optimal
frequency response. The design of a Gaussian filter using the "Frequency Sampling Design"
method is also presented.

Reconfigurable filter modules were implemented for five types of IIR filters and four types
of FIR filters. The implemented types of IIR filters are the Butterworth filter, the Chebyshev
filter, the Inverse Chebyshev filter, the Elliptical filter and the Bessel filter. Two FIR filter
modules, based on the "Frequency Sampling Design" method, were implemented called
freqsampling, and gauss, the latter of which is the Gaussian filter module implementation.
An FIR filter module was also implemented using the "Design by Windowing" method and
is called hamming. The "Parks-McClellan" FIR implementation is called remezex.

Coefficients generated by the reconfigurable filter modules were used to process an input
impulse function. The resulting frequency response was compared to that generated by
MATLAB and is presented in Appendix A. The digital reconfigurable IIR filter modules
were found to yield the same responses as the corresponding functions in MATLAB. The
FIR digital filter modules also yielded the same frequency responses as MATLAB. The
Parks-McClellan method provides the flexibility to adjust the passband and stopband ripple

65

while yielding a comparatively steep transition. However, the algorithm is much more
computationally intensive. A Gaussian filter module and a digital integrator module were
also successfully implemented. The Gaussian filter and digital integrator modules will
facilitate the development of a GMSK modulator for the ROBR.

The "Design by Windowing" and "Parks-McClellan" filter modules were successfully
adapted for use on a DSP board. As well, a module for processing a signal using the FIR
filter coefficients generated was implemented on the DSP. The DSP board used was the
Daytona Dual c62 processor board from Spectrum Signal Processing Inc. Issues related to
dynamic memory allocation and handshaking between the host and the DSP were discussed.
Further work is required to completely adapt the filter modules for the ROBR, to assess the
ability to reconfigure the modules while the ROBR is operating, and to resolve any time
critical issues for the ROBR where more computationally intensive algorithms are used.

66

8 REFERENCES

[1] Allan V. Oppenheim and Ronald W. Schäfer, Discrete-Time Signal Processing, Prentice
Hall Signal, Englewood Cliffs, New Jersey

[2] Micheal J. Corinthios, Analyse des signaux, Quatrieme edition, Departement de genie
electrique et de genie informatique, Ecole Polytechnique de Montreal, Janvier 2000.

[3] T.W. Parks and C. S. Burrus, Digital Filter Design, John Wiley & Sons, Inc.

[4] Alexander D. Poularikas, The Handbook of Formulas and Tables for Signal Processing,
IEEE Press and CRC Press, 1999.

[5] C. Britton Rorabaugh, Digital Filter Designer's Handbook, Second Edition, McGraw-
Hill

[6] A. Antonious, "Accelerated procedure for the design ofequiripple nonrecursive, digital
filters" IEE Proc, Pt. G, vol. 129, pp. 1-10, Feb 1982 (see IEEE Proc, Pt. G vol. 129,
p. 107 June 1982 for errata)

[7] A. Antonious, "New improved method for the design of weighted-Chebyshev,
nonrecursive, digital filters" IEEE Trans. Circuits Syst., vol. CAS-30, pp. 740-750, Oct.
1983.

[8] Andreas Antonious, Digital Filters: Analysis and Design, McGraw-Hill Book Company

[9] Daytona Dual 'C6x PCI Board Technical Reference, Document Number 500-00383,
Revision 2.00, May 1999

[10] Daytona/Barcelona 'C6x PCI Board Windows NT Programming Guide, Document
Number 500-00384, Revision 1.10, May 1999

[11] TMS320C62x/C67x, Programmer's Guide, Literature Number: SPRU198B, Texas
Instruments, February 1998

[12] Kazuaki Murota and Kenkichi Hirade, " GMSK Modulation for Digital Mobile Radio
Telephony", IEEE Transactions on Communications, Vol. COM-29,NO. 7, JULY 1981

67

APPENDIX A

A1. RESULTS

A1.1. (IR filter modules

A1.1.1. Butterworth filter

Reconfigurable filter module
frequency responses

Corresponding MATLAB function
 frequency responses

2no Order

-40 -SO -20 -10 0 10 20 X 40 SO -90 -40 -30 -X -10 0 10 20 X 40 90

«FÖrder

■80 -40 -SO 10 20 30 40 90
10 20 30 40 90

Table Al Results for the Butterworth filter module

Al

A1.1.2. Chebyshev filter

Reconfigurable filter module
frequency responses

Corresponding MATLAB function
frequency responses

2nd Order

irw1 l#
flt^KT;

-80 .40 -30 JO -10 0 10 20 30 40 80

-80 -40 -30 -20 -10 10 20 X 40 50

«FÖrder

-90 -40 -30 -ao

~:t»Trtr7iTnimiM,f
TTrnrnkannH, lililüi wrmimrimin

-SO -40 -30 -20 -10 0 10 20 30 40 60

Table A2 Results for the Chebyshev filter module

A2

A1.1.3. Inverse Chebyshev filter

Reconfigurable filter module
frequency responses

Corresponding MATLAB function frequency
 responses

■>nd Order

0.008

20 X 40 SO
-50 -40 -30 -20 -10 0 10 20 30 40 SO

«FOrder

-60-40-30-20 30 40 60

Table A3 Results for the Inverse Chebyshev filter module

A3

A1.1.4. Elliptical filter

Reconfigurable filter module
frequency responses

Corresponding MATLAB function
frequency responses

"^Order

11 ilMl H ii i hi i
fliillliiil

! i!i:|■!■

«III! II I Mi :

ii

10 20 30 40 80

9m Order

acBiyiSMir/Pit,!

tyqwj:
<:■'

i'^-rati'l'inamm
■«0-40-30-20 -10 10 20 30 40 80

torgiftttm

1Ü JIM
ii

! II

T»

Sifi

ftr«

f
! i '^h'ftWff

■80 -40-30 -20 -10 10 20 30 40 80

Table A4 Results for the Elliptical filter module

A4

A1.1.5. Bessel filter

Reconfigurable filter module
Frequency responses

Corresponding
MATLAB function
frequency responses

2nd Order

x10

3

2

4t!i!i! life !l Hi Iftix
nP4

i i h Ri
|l|!|||lllil||l'fe

H

I : I
■Hi!

Hilfe
hi.

ttiiBiftt
Q'!"'

iiiiiiHiiinj||}|iiii|!i!'||||iiiiiiiiiiiiii!iii^ ■MMH1H
iilllllilllllllll 2ss

■50 -40 -30-20-10 0 10 20 30 40 50

No corresponding
MATLAB function

available

9m Order

x10

-50-40-30-20 -10 10 20 40 50

No corresponding
MATLAB function

available

Table A5 Results for the Bessel filter module

A5

A1.2. FIR filtering modules

A1.2.1. Frequency sampling design method

Reconfigurable filter module
Coefficients

Error Curve
(Ideal low-pass filter - Reconfigurable filter)

vs.
 samples

Mean error

0.071592
-0.079360
-0.100000
0.155754
0.452015
0.452015
0.155754
-0.100000
-0.079360
0.071592

-0.0572

7\ 7"

MO 400

0.037334
-0.021192
-0.049873
-0.000000
0.059380
0.030376
-0.066090
-0.085807
0.070096
0.311490
0.428571

0.311490
0.070096
-0.085807
-0.066090
0.030376
0.059380
-0.000000
-0.049873
-0.021192
0.037334

0.450364 -0.023603
0.150672 0.023864
-0.091068 0.024402
-0.065771 -0.025247
0.051918 -0.026453
0.043277 0.028104
-0.037453 0.030329
-0.033333 -0.033333
0.030329 -0.037453
0.028104 0.043277
-0.026453 0.051918
-0.025247 -0.065771
0.024402 -0.091068
0.023864 0.150672
-0.023603 0.450364

0.0354

 : : £
\ 1

1 :"/""
 ; H

■/

 : J

-—^>--- ■•/

•■••1 \

«HI aoo

0.0265

•
-0.1

■*.}

4.1

«4

»h >■■■■■

7» MO

Table A6 Results for the Frequency Sampling Design filter module

A6

"Frequency Sampling Design" filter module
10 coefficients

Frequency Response
The maximum value in the
passband was 1.0946 V/V,
yielding an overshoot of 9.46%.

1.4

1.2

'

1
^^ \

0.6

\

\
\
\

0.4
\
\ \

0.2

0
(

I

) Q1 0.2 0.3 Q4 0.5 0.6 Q7 0.8 0.9
normalized frequency

Power Spectrum

10

~x

-10

co -20

■o

-30

-40
:i

-50

-60

I
0 0.1 02 0.3 0.4 05 Q6 0.7 0.8 08

normalized frequency
1

Table A7 Frequency and power spectrum for N=10 FIR filter using the Frequency
Sampling Design filter module

A7

"Frequency Sampling Design" filter module
21 coefficients

Frequency Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

normalized frequency

Power Spectrum

10

o

-10

•20

-30

-40

•SO

-60

-70

ll II !■' \ \l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
normalized frequency

The maximum value in the
passband was 1.1173
V/V yielding an overshoot
of 11.2%.

Table A8 Frequency and power spectrum for N=21 FIR filter using the Frequency
Sampling Design filter module

A8

•'Frequency Sampling Design" filter module
30 coefficients

1.4

1.2

_ 0-8

1
X
— 0.6

0.4

0.2

Frequency Response

■

 i —

/ \

•

~'
--''

\ \
1

•

\ :
\
\

1
\

■

■

\
1

lA -
■

' » ,
. 1 V v ■™\. ---. '~"\

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
normalized frequency

Power Spectrum

10 '— —'— —'— ' —i— -r-

0

-10

. -----—-

\

-20

CD

■° -30

1
1
i

i
AA

I] l\ (\i\f\ A
-40

i
I i

i

i \

|

-60 11 ' I i

i
•

■60

-70
(

i

I ■

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
normalized ft equency

The maximum value in the
passband was 1.1253
V/V yielding an overshoot
of 11.3%.

Table A9 Frequency and power spectrum for N=30 FIR filter using the Frequency
Sampling Design filter module

A9

A1.2.2. Design by windowing with a Hamming window

Filtering modules
coefficients

N=10

N=21

N=30

0.005802
-0.020847
-0.027203
0.246347
0.540144
0.311056
-0.045523
-0.051125
0.013607
0.005802

-0.002606
0.004495
0.003476
-0.015374
-0.002053
0.041446
-0.015239
-0.097822
0.102079
0.473677
0.484587

0.109391
-0.110106
-0.018103
0.052356
-0.002786
-0.022686
0.005584
0.007359
-0.003339
-0.002606

-0.001900
0.002417
0.002653
-0.005340
-0.004874
0.011946
0.007921
-0.023994
-0.011179
0.045774
0.014091
-0.093139
-0.016201
0.310797
0.515847

0.317607
-0.016925
-0.099554
0.015429
0.051438
-0.012922
-0.028620
0.009785
0.015347
-0.006530
-0.007441
0.003764
0.003263
-0.002155
-0.001900

Mean
error

0.0442

-0.0472

-0.0159

Error Curve
(Ideal low-pass filter -
Reconflgurable filter)

vs.
 samples

MATLAB
generated

coefficients

0.0040
-0.0120
-0.0411
0.1147
0.4344
0.4344
0.1147
-0.0411
-0.0120
0.0040

0.0000
0.0036
-0.0000
-0.0122
0.0000
0.0343
-0.0000
-0.0858
0.0000
0.3106
0.4991

-0.0012
0.0015
0.0022
-0.0034
-0.0052
0.0077
0.0110
-0.0155
-0.0213
0.0291
0.0399
-0.0562
-0.0841
0.1465
0.4490

0.3106
0.0000
-0.0858
-0.0000
0.0343
0.0000
-0.0122
-0.0000
0.0036
0.0000

Mean
error

0.0042

0.0014

0.4490
0.1465
-0.0841
-0.0562
0.0399
0.0291
-0.0213
-0.0155
0.0110
0.0077
-0.0052
-0.0034
0.0022
0.0015
-0.0012

2.7510e-004

Table A10 Results for the Design by Windowing filter module

A10

"Design by Windowing" filter module
10 coefficients

Frequency Response
Reconfigurable filter module MATLAB

i

0.9
-■-

0.9
~"~-.-._ •

0.« 0.« •
0.7 \ 0.7 \ •
o.e

J 0.9
""" 0.4

0.J

\
_ °'6

J, 0.5
X
— 0.4

0.3

V

\

0.2 0.2 \
0.1

0

0.1

B 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9

normalized frequency
0

) 01 02 0.3 0.4 0.5 06 0.7 08 OS

normalized frequency

Power Spectrum
Reconfigurable filter module MATLAB

-5
'~^-^

-10 """"----..,
-10 \ -20

•15 -30

-20 -40 \
GO „ ■0-25 m -50 \

-30 \ -60 \ '
-35 -, -70 ■

\
\ -40 -80 ■

-49

-50
V--" •90

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.0 0.9
normalized frequency

1 -100
» 01 02 0.3 0.4 0.5 06 0.7 08 OS

normalized frequency
1

Table All Frequency and power spectrum for N=10 FIR filter using the Design by
Windowing filter module

All

"Design by Windowing" filter module
21 coefficients

Frequency Response
Reconfigurable filter module MATLAB

1

0.» \ 0.0

0.» \ o.a \
0.7 \ 0.7

0.6 \ 0.6 \

s0-5
EM

\
\

|o,

E. 0.4 \
0.3 \ 0.3

0.2
\ 0.2 \

0.1

0

0.1 \

) 0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.0
normalized frequency

0 (> 01 02 0.3 0.4 0.5 QO 07 08 0»
normalized frequency

Power Spectrum
Reconfigurable filter module MATLAB

0

-10

-20
\
\

i

0

-10

-20

-30

-40
\ \ \

3-30
\

CD -50

-60
-40 i

i
-70 » I

-90 -80 I
-ao

-SO

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 - 0.0
normalized frequency

1 -100
0 0.1 0.2 03 0.4 as 0.6 0.7 0.6 0.S

normalized frequency
1

Table A12 Frequency and power spectrum for N=21 FIR filter using the Design by
Windowing filter module

A12

'Design by Windowing" filter module
30 coefficients

Frequency Response
Reconfigurable filter module MATLAB

1X1 03 0.3 0.4 0.8 0.« 0.7 0.6 0.»
normalized frequency

0 0.1 0.2 03 0.4 as 0.6
normalized frequency

0.7 0.» 0.9 1

Power Spectrum
Reconfigurable filter module MATLAB

0.1 02 0.3 0.4 O.S OS 0.7 08 0» 1

normalized frequency
0.1 0.2 03 0.4 tt5 0.6

normalized frequency

Table A13 Frequency and power spectrum for N=30 FIR filter using the Design by
Windowing filter module

A13

A1.2.3. Parks-McClellan method

Filtering modules
coefficients

N=10 0.059964
-0.125401
-0.115243
0.138672
0.444618
0.444618
0.138672
-0.115243
-0.125401
0.059964

Mean
error

-0.0560

Error Curve
(Ideal low-pass filter -
Reconfigurable filter)

vs.
 samples

/
/] /!

/ i
■, / '

! i

1/
1/

MATLAB generated
coefficients

0.0842
-0.1751
-0.1373
0.1335
0.4412
0.4412
0.1335
-0.1373
-0.1751
0.0842

Mean
error

-0.0932

N=21

N=30

0.000017
0.048051
-0.000023
-0.036911
-0.000015
0.057263
0.000001
-0.102173
0.000012
0.316962
0.500019

0.316962
0.000012
-0.102173
0.000001
0.057263
-0.000015
-0.036911
-0.000023
0.048051
0.000017

-0.0188

J
/

_ _ /
i

i

M MO ua

-0.0001
0.1045
0.0000
-0.0445
-0.0000
0.0628
0.0000
-0.1056
0.0001
0.3181
0.4999

-0.008176
0.016396
0.013294
-0.010301
-0.013590
0.017082
0.020431
-0.024314
-0.029749
0.036631
0.046579
-0.061479
-0.088117
0.148791
0.449824

0.449824
0.148791
-0.088117
-0.061479
0.046579
0.036631
-0.029749
-0.024314
0.020431
0.017082
-0.013590
-0.010301
0.013294
0.016396
-0.008176

-0.0069 1
/!

/
„_

' "

-0.0257
0.0515
0.0310
-0.0107
-0.0165
0.0227
0.0250

-0.0281
-0.0331
0.0397
0.0490
-0.0635
-0.0895
0.1497
0.4501

0.3181
0.0001
-0.1056
0.0000
0.0628
-0.0000
-0.0445
0.0000
0.1045

•0.0001

0.4501
0.1497
-0.0895
-0.0635
0.0490
0.0397
-0.0331
-0.0281
0.0250
0.0227
-0.0165
-0.0107
0.0310
0.0515

0.0530

-0.0312

Table A14 Results for the Parks-McClellan design filter module

A14

'Parks-McClellan Method" filter module
10 coefficients

Frequency Response
Reconfigurable filter module MATLAB

1.2

1

_0.»

I«
0.4

0.2

0

,_,
/ \ \ *

/ \

"-■•'"

\
\

\

■ \ /
. . V. . V . \

0.1 0.2 03 0.4 0.5 0.6 0.7 0.0 0.S 1
nomialized frequency

o 0.1 0.2 03 o.4 as o.e
normalized frequency

0.7 0.« 0.9 1

Power Spectrum
Reconfigurable filter module MATLAB

01 02 0.3 0.4 0.9 06 0.7 0« OS 1
normalized frequency

0 0.1 0.2 03 0.4 a« 0.6
normalized frequency

0.7 o.« 0.9 1

Table A15 Frequency and power spectrum for N=10 FIR filter using the Parks-McClellan
filter module

A15

"Parks-McClellan Method" filter module
21 coefficients

Frequency Response
Reconfigurable filter module MATLAB

01 02 0.3 0.4 0.S OS 0.7 a» 0» 1
normalized frequency

o at 02 o.> 0.4 0.5 ae 0.7 a« oa 1
normalized frequency

Power Spectrum
Reconfigurable filter module

0 --— — ■

•10 \ '

-20 •
.'■

CO-30
■a i V V V' ■

-40 il li
40

I
i

«0
i

ai 03 as 0.4 as oe 07 OB ae <
normalized frequency

MATLAB

0
_ ,

-10 \ .

-20

1
i
\
A
j \ f\ AA

/
1
I

-30
\ v,

I ■

■40 ■

■SO '

o 0.1 0.2 03 0.4 as o.e 0.7
normalized frequency

0.« o.t 1

Table A16 Frequency and power spectrum for N=21 FIR filter using the Parks-McClellan
filter module

A16

Tarks-McClellan Method" filter module
30 coefficients

Frequency Response
Reconfigurable filter module MATLAB

1.2

1

_ 0.»

/ \ 7 \ / \

I/'VVVVW
0.1 0.3 0.3 0.4 OS 0.6 0.7 OB 0.9 1

 normalized frequency

o ai 02 o.3 o.4 o.s ae 0.7 as os 1
normalized frequency

Power Spectrum
Reconfigurable filter module MATLAB

10

0

-10

-20

CD -30
•a

-40

-SO

-60

\
\

IM
II

A A
I \ A

1
0.1 0^ 0.3 04 AS 0.6 0.7 OB 0.9 1

 normalized frequency

0.1 0.2 03 0.4 OS 0.6 0.7 0.«

normalized frequency

Table A17 Frequency and power spectrum for N=30 FIR filter using the Parks-McClellan
filter module

A17

A1.2.4. Gaussian filter

Table A18 Frequency and power spectrum results for the Gaussian filter module

A18

A1.2.5. Digital Integrator

input bit stream

0.5

> 0

-0.5

a 1.

1 -I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

t

1

0

■1

Output

/ j

\
\
\
\

! I I I I

\
\
\

' '/ ' \'/

\ ;

V"~ i" 'A" "i " i

N/ i i ! I \
0 200 400 600 800 1000 1200 1400 1600 1800 2000

t

Table A19 Results for the digital integrator filter module

A19

APPENDIX B

Steps to calculate poles and zeros of the elliptic filter

The Elliptical filter coefficients computation module implements the following steps to
calculate the poles and zeros of such a filter. Poles and zeros are then used to compute the
coefficients of the filter [4].

(op = passband frequency

a)s = stopband frequency
Ap = maximum passband loss (dB)

As = maximum stopband loss (dB)
k = selectivity factor =copla)s

1. k' =Vl-*2

o l 7^ 1-VF
l+VF

3. q = q0 + 2q0
5 +15q0

9 +150q"

4. D =
10°"'-1

100M' -1

. ^ logl6D
5. n>—=

log(l/<?)

, k 1, KT^'+I
6. A= In -rrr-.

In 10005"' -1

7. <r0 =
V'4 J(-l)m^w(m+,) sinh[(2m + l)A]

ffl»0

l + 2£(-l)m^m2cosh2/wA
IB=1

f
Z.W=Ul + kcr0

2)
2\

1 + ^.

Bl

9. n.=
2?1/4£(-l)'V(m+1)sin

m-0

(2m + X)nfj.

l + 2£(-ir9
m2cosh

m«l

Imx/u
n

/-■

For n odd

For n even
i = l,2,...,/

10.F,= (1 + Aß,a)
k

ll-o, =-T

Ab,-
(cror,)2+(fl,Fr)2

(l + cr0
2fi(

2)2

, 2^
Ou = U 1 , 2^ 2

12. #0 =

r h
(-1 «0/

-on^

10 -0.05.4 y0/ •n,
i-l «0/

For n odd

For n even

The series in steps 7 and 9 converge rapidly, and three to four terms are sufficient for
most purposes. Using the quadratic formula, the i* pair of complex pole values can be
expressed as

_-bXi±4bx?-4b0
Pi 2

i = l,2,...,/

The zeros occur at

*t = tj^ * = 1,2,...,/

B2

APPENDIX C

Header file, "filter.h'

/it***

»Purpose: This library defines the structure, functions and constants to
* implement complex number manipulation
* Author: Benoit Gosselin
* Date:
*

♦ifndef FILTER_H
♦define FILTER_H

♦include <iostream.h>
♦include <conio.h>
♦include <math.h>
♦include <stdlib.h>
♦include <stdio.h>

♦define PI 3.14159265358979
♦define EPSILON 1.0e-06

/* This type implements a complex number structure*/

struct cnum
{

float Q;
float I;

};

/it***

*
* Purpose: This function computes the real part and the imaginary
* part of a complex number expressed by r*exp(pi*teta)
* Author: Benoit Gosselin
* Date:
*

cnum cfun (float c,float r)

{
cnum nb;
nb.Q = r*cos((float)PI*c);
nb.I = r*sin((float)PI*c);
return nb;

}

*

* Purpose: Generalized form for the previous function to allow
* complex input
* Author: Benoit Gosselin
* Date:
*

cnum cexp(cnum c)
{

cnum nb;
nb.Q = exp(c.Q)*cos(c.I);
nb.I - exp(c.Q)*sin(c.l);
return nb;

}

*
* Purpose: Output function. This function prints the coefficients
* computed for an IIR filter in a text file.

Cl

* Format of the text file:
*

* 3.000000 //order of the filter
* 0.040142 //digital static gain
* //numerator's coeff //denominator's coeff
* 0.040142 0.000000 1.000000 0.000000
* 0.120425 0.000000 -1.057236 0.000000
* 0.120425 0.000000 1.087358 0.000000
* 0.040142 0.000000 -0.708990 0.000000
*

* the first row is for the real part and the second is for imaginary part
*

* Author: Benoit Gosselin
* Date:
* parameters:
*

* cN : coefficients of the numerator
* cD : coefficients of the denominator
* N : number of coefficients at the numerator
* M : number of coefficients at the denominator
* order : order of the filter
* Kd : digital static gain of the filter
* filename : name of the file where should be print the coefficients
•••••A**/

void print_coeff(cnum cN[],cnum cD[J,int N,int M,int order,float Kd,char filename!])
<

int i;
FILE *outputfile,*matoutputfile;
outputfile - fopen(filename, "w");
//print an output file in a different format for Matlab uses
matoutputfile - fopenCmatcoeffout.txt", "w");
fprintf(outputfile,"%f\n",(float)order);
fprintf(outputfile,"%f\n",Kd);
cout«endl«"numerator's coefficients";

for(i «= 0;i < N; i++)
{
cout«endl«cN[i] .Q<<" + i"«cN[i] .1;
fprintf(matoutputfile,"%f\n",cN[i].Q);
fprintf(outputfile, "%f %f %f %f\n",cN[i].Q,cN[i].I,cD[i].Q,cD[i].1);
}

for(i -= 0;i < N; i++)
fprintf(matoutputfile,"%f\n",cN[i].1);

cout«endl«"denominator's coefficients";
for(i - 0;i < M; i++)

{
cout«endl«cD[i] .Q«" + i"«cD[i] .1;
fprintf(matoutputfile,"%f\n",cD[i].Q);
}

for(i - 0;i < M; i++)
fprintf(matoutputfile, "%f\n",cD[i] .1) ;

fclose(outputfile);
fclose(matoutputfile);

C2

* Purpose: To multiply 2 polynomials together
* Author: Benoit Gosselin
*

* N and M are the order of polynomials a and b
* Date:
*
* •it***/

float * polym(float a[],int N,float b[],int M)

{
int i,j;
int length;
length = (N + M + 1);
i«j«0;

float *poly - (float *)malloc((length) * sizeof(float));

for(i=0; i<length;i++)
poly[i] » 0.0;

for(i=0;i<N+l;i++)
{
for(j«0;j<M+l;j++)

poly[length-i-j-l]+«a[i]*b[j];
)

return poly;
)

*
* Purpose: If the real part or the imaginary part of the complex
* number is too small, set it to 0
* Author: Benoit Gosselin
* Date:
*

cnum set_to_zero(cnum a)
<

if(fabs(a.Q)<EPSIL0N)
a.Q = 0.0;

if(fabs(a.I)<EPSILON)
a.I - 0.0;

return a;
)

C3

/**
*

* Purpose: This function computes the square root of a complex number
*

* Author: Benoit Gosselin
* Date:
*
**/

cnum sqrtc(cnum a)
{

float r, theta;

r - sqrt(a.Q*a.Q + a.I*a.I);

theta - atan(a.I/a.Q);

theta - theta / 2.0;

a.Q » sqrt(r)*cos(theta);
a.I - sqrt(r)*sin(theta);

return a;

)

/**
*
* Purpose: This function computes the norm of a complex number
* Author: Benoit Gosselin
* Date:

**/

float norm2c (float nbQ,float nbl)

<
return (nbQ*nbQ + nbl*nbl);

)

/*********************** ***

* Purpose: This function implements the
* multiplication of two complex numbers
* Author: Benoit Gosselin
* Date:
*
**/

cnum multc(float a,float b,float c,float d)

{
cnum temp;
temp.Q - (a * c) - (b * d);
temp.I - (a * d) + (b * c);
return temp;

)

C4

/♦♦•It**
*
* Purpose: This function implements the square root of a complex number
*

* Author: Benoit Gosselin
* Date:
* <
♦a**/

cnum powc (cnum a,float n)
<

float r, theta;
if(n==0)

{
a.Q - 1;
a.I -= 0;
return a;
}

r - sqrt(a.Q*a.Q + a.I*a.I);

theta - atan(a.I/a.Q);

theta - theta * n;

a.Q » pow(r,n)*cos(theta);
a.I - pow(r,n)*sin(theta);

a»set_to_zero(a);
return a;

*

* Purpose: This function implements the division of two complex numbers
* Author: Benoit Gosselin
* Date:
*

cnum dive(float NQ,float NI,float DQ,float DI)

{
cnum temp - multc(NQ,NI,DQ,-1.0*DI); //multiplying by the conjugate
float norm « norm2c(DQ,DI) ;
if(norm -= 0)

{
cout«endl«"divide by 0 in dive (norm - 0)";
temp.0=0;
temp.1=0;
return temp;
}

else
{
temp.Q - temp.Q / (norm);
temp.I = temp.I / (norm);
return temp;
)

C5

/•a**

*
* Purpose: This function implements an Expansion recursion formula to
* obtain the coefficients of a polynomial from its roots
* Author: Benoit Gosselin
* Date:
* Prameters:
* c : to store the coefficients of the polynomial
* e : roots of the polynomial
* m : order of the polynomial
* n : This indice decrease at each recursion loop from n-m
*

int coeff (struct cnum *c,struct cnum e[],int n,int m)

{
cnum num;
num - multc(c[n].Q,c[n].I,e[m].Q,e[m].1);

c[n+l].Q » c[n+l].Q - num.Q;

c[n+l].I - c[n+l].I - num.1;

if(n > 0)
return coeff(&c[0] ,e,n-l,m) ;

else
return 0;

}

»endif

C6

UNCLASSIFIED
SEÖÜRitV CLASSIFICATION öF WRM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Establishment sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Defence Research Establishment Ottawa
Ottawa, Ontario
K1A 0Z4

SECURITY CLASSIFICATION
(overall security classification of the document,
including special warning terms if applicable)

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C or U) in parentheses after the title.)

Reconfigurable Digital IIR and FIR Filters (u)

4. AUTHORS (Last name, first name, middle initial)

Gosselin,B. .Wilcox, C.

5. DATE OF PUBLICATION (month and year of publication of document)

November 2001

6a NO. OF PAGES (total containing
information. Include Annexes,
Appendices, etc.)

113

6b. NO. OF REFS (total cited in
document)

12

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

DREO Technical Report

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the
address.)

Defence Research Establishment Ottawa
219 Laurier Avenue
Ottawa, Ontario K1A 0Z4

9a PROJECT OR GRANT NO. (if appropriate, the applicable research and
development project or grant number under which the document was
written. Please specify whether project or grant)

9b. CONTRACT NO. (if appropriate, the applicable number under
which the document was written)

10a ORIGINATOR'S DOCUMENT NUMBER (the official document number
by which the document is identified by the originating
activity. This number must be unique to this document.)

DREO TR 2001-099

10b. OTHER DOCUMENT NOS. (Any other numbers which may
be assigned this document either by the originator or by the
sponsor)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

X) Unlimited distribution
) Distribution limited to defence departments and defence contractors; further distribution only as approved
) Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
) Distribution limited to government departments and agencies; further distribution only as approved
) Distribution limited to defence departments; further distribution only as approved
) Other (please specify):

12 DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM DCD03 2/08/87

UNCLASSIFIED
SECURITY CLASSIFICATIöN öF tbkti

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

The work presented in this document contributes to the ROBR (Reconfigurable Omni Band Radio) project started by
the Defence Research Establishment Ottawa and the Communication Research Centre in 1997. ROBR is a testbed
implementation of a reconfigurable satellite communications (satcom) terminal that makes use of a software
communications architecture. Such a system can enable the use of a single ground terminal to communicate over
multiple satellite communications or terrestrial links by supporting multiple standards. The ROBR hardware
architecture includes a microprocessor and several digital signal processor (DSP) boards. The objective of this report is
to document the work done to provide a set of reconfigurable digital filters for use in the ROBR. Five infinite impulse
response (IIR) filtering modules and four finite impulse response (FIR) filtering modules have been implemented. The
function of these modules is to compute the coefficients of a desired filter design. Also, IIR and FIR signal processing
modules have been implemented to process digital signals using the computed coefficients. The modules have been
implemented in the C programming language and are targeted for use on a DSP chip. The implementation of the
modules has been verified and compared with the results obtained with the Signal Processing toolbox from MATLAB.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in
cataloguing the document. They should be selected so that no security classification is required. Identifiers such as equipment model designation,
trade name, military project code name, geographic location mayalso be included. If possible keywords should be selected from a published
thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to select indexing terms
which are Unclassified, the classification of each should be indicated as with the title.)

Digital Filter
IIR Filter
FIR Filter
DSP
Reconfigurable Filter
Filter Coefficients

UNCLASSIFIED
SECURITY CLASSIFICATION tf FöRM

Defence R&D Canada

is the national authority for providing

Science and Technology (S&T) leadership

in the advancement and maintenance

of Canada's defence capabilities.

R et D pour la defense Canada

est responsable, au niveau national, pour

les sciences et la technologie (S et T)

au service de l'avancement et du maintien des

capacites de defense du Canada.

fü RD DEFENCE I *m I DEFENSE

www.drdc-rddc.dnd.ca

\

